How to use your favorite MIP Solver: modeling, solving, cannibalizing

Andrea Lodi
University of Bologna, Italy
andrea.lodi@unibo.it

January-February, 2012 @ Universität Wien
Setting

- We consider a general Mixed Integer Program in the form:

\[\max \{ c^T x : Ax \leq b, x \geq 0, x_j \in \mathbb{Z}, \forall j \in I \} \]

(1)

where matrix \(A \) does not have a special structure.
Setting

• We consider a general Mixed Integer Program in the form:

\[\max \{ c^T x : Ax \leq b, x \geq 0, x_j \in \mathbb{Z}, \forall j \in I \} \] \hspace{1cm} (1)

where matrix \(A \) does not have a special structure.

• Thus, the problem is solved through branch-and-bound and the bounds are computed by iteratively solving the LP relaxations through a general-purpose LP solver.
Setting

• We consider a general Mixed Integer Program in the form:

$$\max \{c^T x : Ax \leq b, x \geq 0, x_j \in \mathbb{Z}, \forall j \in I\}$$

(1)

where matrix A does not have a special structure.

• Thus, the problem is solved through branch-and-bound and the bounds are computed by iteratively solving the LP relaxations through a general-purpose LP solver.

• The course basically covers the MIP but we will try to discuss when possible how crucial is the LP component (the engine), and how much the whole framework is built on top the capability of effectively solving LPs.

• Roughly speaking, using the LP computation as a tool, MIP solvers integrate the branch-and-bound and the cutting plane algorithms through variations of the general branch-and-cut scheme [Padberg & Rinaldi 1987] developed in the context of the Traveling Salesman Problem (TSP).
Motivation

- I have been asked for a PhD course under the general title of *Advanced Methods in Optimization*.
- So, a sensible question is
 - Why *Mixed Integer Programming* and especially *MIP Solvers*?
Motivation

• I have been asked for a PhD course under the general title of Advanced Methods in Optimization.

• So, a sensible question is
 Why Mixed Integer Programming and especially MIP Solvers?

• An easy answer is that developing MIP methodology (and solvers) is what I have been doing for the last 15 years. . .
Motivation

• I have been asked for a PhD course under the general title of Advanced Methods in Optimization.

• So, a sensible question is
 Why Mixed Integer Programming and especially MIP Solvers?

• An easy answer is that developing MIP methodology (and solvers) is what I have been doing for the last 15 years. . .

• However, one main point of talking about MIP and MIP solvers, and especially doing that in Vienna, is that in the recent years MIP solvers have become effective, reliable and flexible tools for algorithmic development and real-world solving.

• In other words, MIP technology as moved from theory to practice and the course will try to establish the confidence and give the pointers to fully take advantage of MIP (solvers).
Outline

1. The building blocks of a MIP solver.
 We will run over the first 50 exciting years of MIP by showing some crucial milestones and we will highlight the building blocks that are making nowadays solvers effective from both a performance and an application viewpoint.
1. **The building blocks of a MIP solver.**
 We will run over the first 50 exciting years of MIP by showing some crucial milestones and we will highlight the building blocks that are making nowadays solvers effective from both a performance and an application viewpoint.

2. **How to use a MIP solver as a sophisticated (heuristic) framework.**
 Nowadays MIP solvers should not be conceived as black-box exact tools. In fact, they provide countless options for their smart use as hybrid algorithmic frameworks, which thing might turn out especially interesting on the applied context. We will review some of those options and possible hybridizations, including some real-world applications.

3. **Modeling and algorithmic tips to make a solver effective in practice.**
 The capability of a solver to produce good, potentially optimal, solutions depends on the selection of the right model and the use of the right algorithmic tools the solver provides. We will discuss useful tips, from simple to sophisticated, which allow a smart use of a MIP solver.
1. The building blocks of a MIP solver.
 We will run over the first 50 exciting years of MIP by showing some crucial milestones and we will highlight the building blocks that are making nowadays solvers effective from both a performance and an application viewpoint.

2. How to use a MIP solver as a sophisticated (heuristic) framework.
 Nowadays MIP solvers should not be conceived as black-box exact tools. In fact, they provide countless options for their smart use as hybrid algorithmic frameworks, which thing might turn out especially interesting on the applied context. We will review some of those options and possible hybridizations, including some real-world applications.

3. Modeling and algorithmic tips to make a solver effective in practice.
 The capability of a solver to produce good, potentially optimal, solutions depends on the selection of the right model and the use of the right algorithmic tools the solver provides. We will discuss useful tips, from simple to sophisticated, which allow a smart use of a MIP solver.

 Finally, we will show that this is NOT the end of the story and many challenges for MIP technology are still to be faced.
Outline

1. The building blocks of a MIP solver.
 We will run over the first 50 exciting years of MIP by showing some crucial milestones and we will highlight the building blocks that are making nowadays solvers effective from both a performance and an application viewpoint.

2. How to use a MIP solver as a sophisticated (heuristic) framework.
 Nowadays MIP solvers should not be conceived as black-box exact tools. In fact, they provide countless options for their smart use as hybrid algorithmic frameworks, which thing might turn out especially interesting on the applied context. We will review some of those options and possible hybridizations, including some real-world applications.

3. Modeling and algorithmic tips to make a solver effective in practice.
 The capability of a solver to produce good, potentially optimal, solutions depends on the selection of the right model and the use of the right algorithmic tools the solver provides. We will discuss useful tips, from simple to sophisticated, which allow a smart use of a MIP solver.

 Finally, we will show that this is NOT the end of the story and many challenges for MIP technology are still to be faced.

A. Lodi, How to use your favorite MIP Solver
PART 1

1. The building blocks of a MIP solver

2. How to use a MIP solver as a sophisticated (heuristic) framework
PART 1

1. The building blocks of a MIP solver

2. How to use a MIP solver as a sophisticated (heuristic) framework

3. Modeling and algorithmic tips to make a solver effective in practice

• Outline:
 – MIP Evolution, early days
 – MIP Evolution, nowadays key features
 – MIP Solvers: exploiting multiple cores
 – MIP Evolution, a development viewpoint
 – MIP Software
Despite quite some work on basically all aspects of IP and in particular on cutting planes, the early days of general-purpose MIP solvers were mainly devoted to develop fast and reliable LP solvers used within good branch-and-bound schemes.
MIP Evolution, early days

• Despite quite some work on basically all aspects of IP and in particular on cutting planes, the early days of general-purpose MIP solvers were mainly devoted to develop fast and reliable LP solvers used within good branch-and-bound schemes.

• Remarkable exceptions are:
 – 1983 Crowder, Johnson & Padberg: PIPX, pure 0/1 MIPs
 – 1987 Van Roy & Wolsey: MPSARX, mixed 0/1 MIPs
MIP Evolution, early days

- Despite quite some work on basically all aspects of IP and in particular on cutting planes, the early days of general-purpose MIP solvers were mainly devoted to develop fast and reliable LP solvers used within good branch-and-bound schemes.

- Remarkable exceptions are:
 - 1983 Crowder, Johnson & Padberg: PIPX, pure 0/1 MIPs
 - 1987 Van Roy & Wolsey: MPSARX, mixed 0/1 MIPs

- When do the early days end?
 Or equivalently, when does the current generation of MIP solvers appear?
MIP Evolution, early days

- Despite quite some work on basically all aspects of IP and in particular on cutting planes, the early days of general-purpose MIP solvers were mainly devoted to develop fast and reliable LP solvers used within good branch-and-bound schemes.

- Remarkable exceptions are:
 - 1983 Crowder, Johnson & Padberg: PIPX, pure 0/1 MIPs
 - 1987 Van Roy & Wolsey: MPSARX, mixed 0/1 MIPs

- When do the early days end?
 Or equivalently, when does the current generation of MIP solvers appear?

- It looks like a major (crucial) step to get to nowadays MIP solvers has been the ultimate proof that cutting plane generation in conjunction with branching could work in general, i.e., after the success in the TSP context:
 - 1994 Balas, Ceria & Cornuéjols: lift-and-project
 - 1996 Balas, Ceria, Cornuéjols & Natraj: gomory cuts revisited
MIP Evolution, Cplex numbers

- Bob Bixby (Gurobi) & Tobias Achterberg (IBM) performed the following interesting experiment comparing Cplex versions from Cplex 1.2 (the first one with MIP capability) up to Cplex 11.0.
MIP Evolution, Cplex numbers

- Bob Bixby (Gurobi) & Tobias Achterberg (IBM) performed the following interesting experiment comparing Cplex versions from Cplex 1.2 (the first one with MIP capability) up to Cplex 11.0.
- 1,734 MIP instances, time limit of 30,000 CPU seconds, computing times as geometric means normalized wrt Cplex 11.0 (equivalent if within 10%).

<table>
<thead>
<tr>
<th>Cplex versions</th>
<th>year</th>
<th>better</th>
<th>worse</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>2007</td>
<td>0</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>10.0</td>
<td>2005</td>
<td>201</td>
<td>650</td>
<td>1.91</td>
</tr>
<tr>
<td>9.0</td>
<td>2003</td>
<td>142</td>
<td>793</td>
<td>2.73</td>
</tr>
<tr>
<td>8.0</td>
<td>2002</td>
<td>117</td>
<td>856</td>
<td>3.56</td>
</tr>
<tr>
<td>7.1</td>
<td>2001</td>
<td>63</td>
<td>930</td>
<td>4.59</td>
</tr>
<tr>
<td>6.5</td>
<td>1999</td>
<td>71</td>
<td>997</td>
<td>7.47</td>
</tr>
<tr>
<td>6.0</td>
<td>1998</td>
<td>55</td>
<td>1060</td>
<td>21.30</td>
</tr>
<tr>
<td>5.0</td>
<td>1997</td>
<td>45</td>
<td>1069</td>
<td>22.57</td>
</tr>
<tr>
<td>4.0</td>
<td>1995</td>
<td>37</td>
<td>1089</td>
<td>26.29</td>
</tr>
<tr>
<td>3.0</td>
<td>1994</td>
<td>34</td>
<td>1107</td>
<td>34.63</td>
</tr>
<tr>
<td>2.1</td>
<td>1993</td>
<td>13</td>
<td>1137</td>
<td>56.16</td>
</tr>
<tr>
<td>1.2</td>
<td>1991</td>
<td>17</td>
<td>1132</td>
<td>67.90</td>
</tr>
</tbody>
</table>
Bob Bixby (Gurobi) & Tobias Achterberg (IBM) performed the following interesting experiment comparing Cplex versions from Cplex 1.2 (the first one with MIP capability) up to Cplex 11.0.

1,734 MIP instances, time limit of 30,000 CPU seconds, computing times as geometric means normalized wrt Cplex 11.0 (equivalent if within 10%).

<table>
<thead>
<tr>
<th>Cplex versions</th>
<th>year</th>
<th>better</th>
<th>worse</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>2007</td>
<td>0</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>10.0</td>
<td>2005</td>
<td>201</td>
<td>650</td>
<td>1.91</td>
</tr>
<tr>
<td>9.0</td>
<td>2003</td>
<td>142</td>
<td>793</td>
<td>2.73</td>
</tr>
<tr>
<td>8.0</td>
<td>2002</td>
<td>117</td>
<td>856</td>
<td>3.56</td>
</tr>
<tr>
<td>7.1</td>
<td>2001</td>
<td>63</td>
<td>930</td>
<td>4.59</td>
</tr>
<tr>
<td>6.5</td>
<td>1999</td>
<td>71</td>
<td>997</td>
<td>7.47</td>
</tr>
<tr>
<td>6.0</td>
<td>1998</td>
<td>55</td>
<td>1060</td>
<td>21.30</td>
</tr>
<tr>
<td>5.0</td>
<td>1997</td>
<td>45</td>
<td>1069</td>
<td>22.57</td>
</tr>
<tr>
<td>4.0</td>
<td>1995</td>
<td>37</td>
<td>1089</td>
<td>26.29</td>
</tr>
<tr>
<td>3.0</td>
<td>1994</td>
<td>34</td>
<td>1107</td>
<td>34.63</td>
</tr>
<tr>
<td>2.1</td>
<td>1993</td>
<td>13</td>
<td>1137</td>
<td>56.16</td>
</tr>
<tr>
<td>1.2</td>
<td>1991</td>
<td>17</td>
<td>1132</td>
<td>67.90</td>
</tr>
</tbody>
</table>

Does anybody know which was the key feature of Cplex v. 6.5?
Figure 1: Strengthening the LP relaxation by cutting planes.
MIP Evolution, nowadays key features

• The current generation of MIP solvers incorporates key ideas developed continuously during the first 50 years of Integer Programming (often in the context of location problems):
MIP Evolution, nowadays key features

- The current generation of MIP solvers incorporates key ideas developed continuously during the first 50 years of Integer Programming (often in the context of location problems):
 - Preprocessing:
 - probing, bound strengthening, propagation
MIP Evolution, nowadays key features

- The current generation of MIP solvers incorporates key ideas developed continuously during the first 50 years of Integer Programming (often in the context of location problems):
 - **Preprocessing:** probing, bound strengthening, propagation
 - **Cutting plane generation:** Gomory Mixed Integer cuts, Mixed Integer Rounding, cover cuts, flow covers, . . .
MIP Evolution, nowadays key features

- The current generation of MIP solvers incorporates key ideas developed continuously during the first 50 years of Integer Programming (often in the context of location problems):

 - Preprocessing:
 probing, bound strengthening, propagation

 - Cutting plane generation:
 Gomory Mixed Integer cuts, Mixed Integer Rounding, cover cuts, flow covers, . . .

 - Sophisticated branching strategies:
 strong branching, pseudo-cost branching, diving and hybrids
MIP Evolution, nowadays key features

- The current generation of MIP solvers incorporates key ideas developed continuously during the first 50 years of Integer Programming (often in the context of location problems):
 - **Preprocessing**: probing, bound strengthening, propagation
 - **Cutting plane generation**: Gomory Mixed Integer cuts, Mixed Integer Rounding, cover cuts, flow covers, . . .
 - **Sophisticated branching strategies**: strong branching, pseudo-cost branching, diving and hybrids
 - **Primal heuristics**: rounding heuristics (from easy to complex), local search, . . .
MIP Evolution, nowadays key features

• The current generation of MIP solvers incorporates key ideas developed continuously during the first 50 years of Integer Programming (often in the context of location problems):

 – **Preprocessing:**

 probing, bound strengthening, propagation

 – **Cutting plane generation:**

 Gomory Mixed Integer cuts, Mixed Integer Rounding, cover cuts, flow covers, . . .

 – **Sophisticated branching strategies:**

 strong branching, pseudo-cost branching, diving and hybrids

 – **Primal heuristics:**

 rounding heuristics (from easy to complex), local search, . . .

• Moreover, the MIP computation has reached such an effective and stable quality to allow the solution of sub-MIPs in the algorithmic process, the MIPping approach [Fischetti & Lodi 2002]. These sub-MIPs are solved both for cutting plane generation and in the primal heuristic context.
MIP Building Blocks: Preprocessing/Presolving

- In the **preprocessing** phase a MIP solver tries to detect certain **changes in the input** that will probably lead to a **better performance** of the solution process.
- This is generally done without “changing” the set of optimal solutions of the problem at hand, a notable exception being symmetry breaking reductions.
MIP Building Blocks: Preprocessing/Presolving

- In the **preprocessing** phase a MIP solver tries to detect certain **changes in the input** that will probably lead to a **better performance** of the solution process.
- This is generally done without “changing” the set of optimal solutions of the problem at hand, a notable exception being symmetry breaking reductions.

- There are two different venues for preprocessing.
 1. **Model preprocessing:**
 MIP models often contain some “garbage”, i.e., **redundant or weak information** slowing down the solution process by forcing the solver to perform **useless operations**. This is especially true for models originating from real-world applications and **created by using modeling languages**.
MIP Building Blocks: Preprocessing/Presolving

• In the preprocessing phase a MIP solver tries to detect certain changes in the input that will probably lead to a better performance of the solution process.

• This is generally done without “changing” the set of optimal solutions of the problem at hand, a notable exception being symmetry breaking reductions.

• There are two different venues for preprocessing.
 1. Model preprocessing:
 MIP models often contain some “garbage”, i.e., redundant or weak information slowing down the solution process by forcing the solver to perform useless operations. This is especially true for models originating from real-world applications and created by using modeling languages. There are two types of sources of inefficiency: First, the models are unnecessary large and thus harder to manage. This is the case in which there are redundant/parallel constraints or variables which are already fixed and nevertheless appear in the model as additional constraints.
MIP Building Blocks: Preprocessing/Presolving

• In the preprocessing phase a MIP solver tries to detect certain changes in the input that will probably lead to a better performance of the solution process.

• This is generally done without “changing” the set of optimal solutions of the problem at hand, a notable exception being symmetry breaking reductions.

• There are two different venues for preprocessing.
 1. Model preprocessing:
 MIP models often contain some “garbage”, i.e., redundant or weak information slowing down the solution process by forcing the solver to perform useless operations. This is especially true for models originating from real-world applications and created by using modeling languages. There are two types of sources of inefficiency: First, the models are unnecessary large and thus harder to manage. This is the case in which there are redundant/parallel constraints or variables which are already fixed and nevertheless appear in the model as additional constraints. Second, the variable bounds can be unnecessary large or the constraints could have been written in a loose way, for example with coefficients weaker than they could possibly be.
MIP Building Blocks: Preprocessing/Presolving

• In the preprocessing phase a MIP solver tries to detect certain changes in the input that will probably lead to a better performance of the solution process.
• This is generally done without “changing” the set of optimal solutions of the problem at hand, a notable exception being symmetry breaking reductions.

• There are two different venues for preprocessing.
 1. Model preprocessing:
 MIP models often contain some “garbage”, i.e., redundant or weak information slowing down the solution process by forcing the solver to perform useless operations. This is especially true for models originating from real-world applications and created by using modeling languages. There are two types of sources of inefficiency:
 First, the models are unnecessary large and thus harder to manage. This is the case in which there are redundant/parallel constraints or variables which are already fixed and nevertheless appear in the model as additional constraints.
 Second, the variable bounds can be unnecessary large or the constraints could have been written in a loose way, for example with coefficients weaker than they could possibly be.

 Thus, modern MIP solvers have the capability of cleaning up and strengthen a model so as to create a presolved instance on which the MIP technology is then applied.
2. **Algorithmic preprocessing:**
 more sophisticated presolve mechanisms are also able to **discover important implications and sub-structures** that might be of fundamental importance later on in the computation for both branching purposes and cutting plane generation.
2. **Algorithmic preprocessing:**
more sophisticated presolve mechanisms are also able to discover important implications and sub-structures that might be of fundamental importance later on in the computation for both branching purposes and cutting plane generation.

As an example, the presolve phase determines the clique table or conflict graph, i.e., groups of binary variables such that no more than one can be non-zero at the same time. The conflict graph is then fundamental to separate clique inequalities [Johnson and Padberg 1982] written as

$$\sum_{j \in Q} x_j \leq 1 \quad (2)$$

where Q denotes a subset of (indices of) binary variables such that at most one of them can be non-zero.
2. Algorithmic preprocessing:
more sophisticated presolve mechanisms are also able to discover important implications and sub-structures that might be of fundamental importance later on in the computation for both branching purposes and cutting plane generation.

As an example, the presolve phase determines the clique table or conflict graph, i.e., groups of binary variables such that no more than one can be non-zero at the same time. The conflict graph is then fundamental to separate clique inequalities [Johnson and Padberg 1982] written as

\[\sum_{j \in Q} x_j \leq 1 \]

(2)

where \(Q \) denotes a subset of (indices of) binary variables such that at most one of them can be non-zero.

Finally, the lower and upper bounds on the objective function and the solution of LPs can be used to perform even stronger reduction (known as probing) with the aim of fixing variables.
MIP Building Blocks: Cutting Planes

- From what has been discussed before, it is clear that cutting planes are a crucial component of MIP solvers.
MIP Building Blocks: Cutting Planes

- From what has been discussed before, it is clear that cutting planes are a crucial components of MIP solvers.

- Given the MIP (1), we are mainly interested in the two sets

\[S := \{ Ax \leq b, x \geq 0, x_j \in \mathbb{Z}, \forall j \in I \} \]
\[P := \{ Ax \leq b, x \geq 0 \}. \]
From what has been discussed before, it is clear that cutting planes are a crucial component of MIP solvers.

Given the MIP (1), we are mainly interested in the two sets

\[S := \{ Ax \leq b, x \geq 0, x_j \in \mathbb{Z}, \forall j \in I \} \]

and

\[P := \{ Ax \leq b, x \geq 0 \}. \]

• **Generality:** We are interested in general-purpose cutting planes, those that can be derived without assuming any special structure for the polyhedron \(P \).

• **Validity:** An inequality \(\alpha x \leq \beta \) is said to be valid for \(S \) if it is satisfied by all \(x \in S \).

• **Obtaining a valid inequality for a continuous set:** Given \(P \), any valid inequality for it is obtained as \(uAx \leq \beta \), where \(u \in \mathbb{R}_+^m \) and \(\beta \geq ub \). (Farkas Lemma)
MIP Building Blocks: Cutting Planes (cont.d)

• Separation:
 Given a family of valid inequalities \mathcal{F} and a solution $x^* \in P \setminus S$, the **Separation problem for \mathcal{F}** is defined as

 Find an inequality $\alpha x \leq \beta$ of \mathcal{F} valid for S such that $\alpha x^* > \beta$ or show that none exists.

• Iterative strengthening
 1. solve the problem $\{\max c^T x : x \in P\}$ and get x^*
 2. if $x^* \in S$ then **STOP**
 3. solve the separation problem, add $\alpha x \leq \beta$ to P and go to 1.

• (Almost) all cutting plane classes that belong to the arsenal of nowadays MIP solvers belong to the family of **split cuts**, i.e., they are separated by exploiting in some way (from easy to complex) a disjunction on the integer variables.
MIP Building Blocks: Cutting Planes (cont.d)

- A basic rounding argument:
 If $x \in \mathbb{Z}$ and $x \leq \overline{f} \notin \mathbb{Z}$, then $x \leq \lfloor \overline{f} \rfloor$.
MIP Building Blocks: Cutting Planes (cont.d)

• A basic rounding argument:
 If \(x \in \mathbb{Z} \) and \(x \leq f \) \(f \notin \mathbb{Z} \), then \(x \leq \lfloor f \rfloor \).

• Using rounding:
 Consider an inequality \(\alpha x \leq \beta \) such that \(\alpha_j \in \mathbb{Z} \), \(j = 1, \ldots, n \) in the pure integer case \(I = \{1, \ldots, n\} \). If \(\alpha x \leq \beta \), then \(\alpha x \leq \lfloor \beta \rfloor \) is valid as well.
• A basic rounding argument:
 If $x \in \mathbb{Z}$ and $x \leq f$ $f \not\in \mathbb{Z}$, then $x \leq \lfloor f \rfloor$.

• Using rounding:
 Consider an inequality $\alpha x \leq \beta$ such that $\alpha_j \in \mathbb{Z}$, $j = 1, \ldots, n$ in the pure integer case $I = \{1, \ldots, n\}$. If $\alpha x \leq \beta$, then $\alpha x \leq \lfloor \beta \rfloor$ is valid as well.

• Example:
 $x \in \mathbb{Z}^2$ such that $x_1 + x_2 \leq 1.9$
MIP Building Blocks: Cutting Planes (cont.d)

• A basic rounding argument:
 If \(x \in \mathbb{Z} \) and \(x \leq \beta \), then \(x \leq \lfloor \beta \rfloor \).

• Using rounding:
 Consider an inequality \(\alpha x \leq \beta \) such that \(\alpha_j \in \mathbb{Z}, \ j = 1, \ldots, n \) in the pure integer case \(I = \{1, \ldots, n\} \). If \(\alpha x \leq \beta \), then \(\alpha x \leq \lfloor \beta \rfloor \) is valid as well.

• Example:
 \(x \in \mathbb{Z}^2 \) such that \(x_1 + x_2 \leq 1.9 \) \(\Rightarrow \) \(x_1 + x_2 \leq \lfloor 1.9 \rfloor = 1 \)
• Theorem [Gomory 1958, Chvátal 1973]:
 If \(x \in \mathbb{Z}^n \) satisfies \(Ax \leq b \), then the inequality \(uAx \leq \lfloor ub \rfloor \) is valid for \(S \) for all \(u \geq 0 \) such that \(uA \in \mathbb{Z}^m \).
MIP Building Blocks: Cutting Planes (cont.d)

- **Theorem** [Gomory 1958, Chvátal 1973]:

 If \(x \in \mathbb{Z}^n \) satisfies \(Ax \leq b \), then the inequality \(uAx \leq \lfloor ub \rfloor \) is valid for \(S \) for all \(u \geq 0 \) such that \(uA \in \mathbb{Z}^m \).

Example:

Consider the polyhedron given by the two inequalities

\[
\begin{align*}
 x_1 + x_2 &\leq 2 \\
 3x_1 + x_2 &\leq 5
\end{align*}
\]
MIP Building Blocks: Cutting Planes (cont.d)

• **Theorem** [Gomory 1958, Chvátal 1973]:

 If \(x \in \mathbb{Z}^n \) satisfies \(Ax \leq b \), then the inequality \(uAx \leq \lfloor ub \rfloor \) is valid for \(S \) for all \(u \geq 0 \) such that \(uA \in \mathbb{Z}^m \).

Example:
Consider the polyhedron given by the two inequalities

\[
\begin{align*}
x_1 + x_2 &\leq 2 \\
3x_1 + x_2 &\leq 5
\end{align*}
\]

Let \(u_1 = u_2 = \frac{1}{2} \), \(\Rightarrow \ 2x_1 + x_2 \leq 3.5 \)
MIP Building Blocks: Cutting Planes (cont.d)

- **Theorem** [Gomory 1958, Chvátal 1973]:

 If \(x \in \mathbb{Z}^n \) satisfies \(Ax \leq b \), then the inequality \(uAx \leq \lfloor ub \rfloor \) is valid for \(S \) for all \(u \geq 0 \) such that \(uA \in \mathbb{Z}^m \).

Example:
Consider the polyhedron given by the two inequalities

\[
\begin{align*}
 x_1 + x_2 &\leq 2 \\
 3x_1 + x_2 &\leq 5
\end{align*}
\]

Let \(u_1 = u_2 = \frac{1}{2} \), \(\Rightarrow \) \(2x_1 + x_2 \leq 3.5 \)

and rounding we obtain \(2x_1 + x_2 \leq 3 \)
MIP Building Blocks: Branching

- In its basic version the branch-and-bound algorithm [Land & Doig 1960] iteratively partitions the solution space into sub-MIPs (the children nodes) that have the same theoretical complexity of the originating MIP (the father node, or the root node if it is the initial MIP).
MIP Building Blocks: Branching

• In its basic version the branch-and-bound algorithm [Land & Doig 1960] iteratively partitions the solution space into sub-MIPs (the children nodes) that have the same theoretical complexity of the originating MIP (the father node, or the root node if it is the initial MIP).

• Usually, for MIP solvers the branching creates two children by using the rounding of the solution of the LP relaxation value of a fractional variable, say x_j, constrained to be integral

$$x_j \leq [x_j^*] \quad \text{OR} \quad x_j \geq [x_j^*] + 1.$$ \hspace{1cm} (5)
MIP Building Blocks: Branching

• In its basic version the branch-and-bound algorithm [Land & Doig 1960] iteratively partitions the solution space into sub-MIPs (the children nodes) that have the same theoretical complexity of the originating MIP (the father node, or the root node if it is the initial MIP).

• Usually, for MIP solvers the branching creates two children by using the rounding of the solution of the LP relaxation value of a fractional variable, say x_j, constrained to be integral

$$x_j \leq \lfloor x_j^* \rfloor \quad \text{OR} \quad x_j \geq \lfloor x_j^* \rfloor + 1.$$ \hspace{1cm} (5)

• On the two children, left (or “down”) branch and right (or “up”) branch, the integrality requirement on the variables $x_j, \forall j \in I$ is relaxed and the LP relaxation is solved (again).
MIP Building Blocks: Branching

• In its basic version the branch-and-bound algorithm [Land & Doig 1960] iteratively partitions the solution space into sub-MIPs (the children nodes) that have the same theoretical complexity of the originating MIP (the father node, or the root node if it is the initial MIP).

• Usually, for MIP solvers the branching creates two children by using the rounding of the solution of the LP relaxation value of a fractional variable, say x_j, constrained to be integral

$$x_j \leq \lfloor x_j^* \rfloor \quad \text{OR} \quad x_j \geq \lfloor x_j^* \rfloor + 1.$$ \hspace{1cm} (5)

• On the two children, left (or “down”) branch and right (or “up”) branch, the integrality requirement on the variables $x_j, \forall j \in I$ is relaxed and the LP relaxation is solved (again).

• Sub-MIPs become smaller and smaller due to the partition mechanism (basically some of the decisions are taken) and eventually the LP relaxation is directly integral (or infeasible).
MIP Building Blocks: Branching

- In its basic version the branch-and-bound algorithm [Land & Doig 1960] iteratively partitions the solution space into sub-MIPs (the children nodes) that have the same theoretical complexity of the originating MIP (the father node, or the root node if it is the initial MIP).

- Usually, for MIP solvers the branching creates two children by using the rounding of the solution of the LP relaxation value of a fractional variable, say x_j, constrained to be integral

\[
x_j \leq \lfloor x_j^* \rfloor \quad \text{OR} \quad x_j \geq \lfloor x_j^* \rfloor + 1.
\]

- On the two children, left (or “down”) branch and right (or “up”) branch, the integrality requirement on the variables $x_j, \forall j \in I$ is relaxed and the LP relaxation is solved (again).

- Sub-MIPs become smaller and smaller due to the partition mechanism (basically some of the decisions are taken) and eventually the LP relaxation is directly integral (or infeasible).

- In addition, the LP relaxation is solved at every node to decide if the node itself is worthwhile to be further partitioned: if the LP relaxation value is already not better (bigger) than the incumbent, the node can be safely fathomed.
MIP Building Blocks: Branching (cont.d)

- Of course, the basic idea of the splitting a node does not require that branching is performed as in Eq. (5): i.e., more than two children could be created, and one can branch on more general hyperplanes, or, in general, on any other disjunctive condition.
MIP Building Blocks: Branching (cont.d)

- Of course, the basic idea of the splitting a node does not require that branching is performed as in (5): i.e., more than two children could be created, and one can branch on more general hyperplanes, or, in general, on any other disjunctive condition.

- The reason why variable branching (5) is the most popular (and this situation is not likely to change anytime soon, at least for MIP solvers) is that it takes full advantage of the ability of the Simplex algorithm to recompute the optimal solution of the LP relaxation if only variable bounds (possibly one) have changed.
MIP Building Blocks: Branching (cont.d)

- Of course, the basic idea of the splitting a node does not require that branching is performed as in (5): i.e., more than two children could be created, and one can branch on more general hyperplanes, or, in general, on any other disjunctive condition.

- The reason why variable branching (5) is the most popular (and this situation is not likely to change anytime soon, at least for MIP solvers) is that it takes full advantage of the ability of the Simplex algorithm to recompute the optimal solution of the LP relaxation if only variable bounds (possibly one) have changed.

- In fact, on average, for a single LP solution Interior Point algorithms performs better than the Simplex algorithm [Rothberg 2010], which is in turn (currently) unbeatable in the iterative context.
MIP Building Blocks: Branching (cont.d)

- Of course, the basic idea of the splitting a node does not require that branching is performed as in (5): i.e., more than two children could be created, and one can branch on more general hyperplanes, or, in general, on any other disjunctive condition.

- The reason why variable branching (5) is the most popular (and this situation is not likely to change anytime soon, at least for MIP solvers) is that it takes full advantage of the ability of the Simplex algorithm to recompute the optimal solution of the LP relaxation if only variable bounds (possibly one) have changed.

- In fact, on average, for a single LP solution Interior Point algorithms performs better than the Simplex algorithm [Rothberg 2010], which is in turn (currently) unbeatable in the iterative context.

- The described branch-and-bound framework requires two independent and important decisions at any step: Node and Variable selection.
1. **Node selection:**
 This is very classical: one extreme is the so called best-bound first strategy in which one always considers the most promising node, i.e., the one with the highest LP value, while the other extreme is depth first where one goes deeper and deeper in the tree and starts backtracking only once a node is fathomed.
MIP Building Blocks: Branching (cont.d)

1. **Node selection:**
 This is very classical: one extreme is the so called **best-bound first** strategy in which one always considers the **most promising node**, i.e., the one with the highest LP value, while the other extreme is **depth first** where one goes **deeper and deeper** in the tree and starts backtracking only once a node is fathomed.
 All **other techniques**, more or less sophisticated, are **basically hybrids** around these two ideas.
1. **Node selection:**
 This is very classical: one extreme is the so called best-bound first strategy in which one always considers the most promising node, i.e., the one with the highest LP value, while the other extreme is depth first where one goes deeper and deeper in the tree and starts backtracking only once a node is fathomed.
 All other techniques, more or less sophisticated, are basically hybrids around these two ideas.

2. **Variable selection:**
 The variable selection problem is the one of deciding how to partition the current node, i.e., on which variable to branch on in order to create the two children.
MIP Building Blocks: Branching (cont.d)

1. **Node selection:**
 This is very classical: one extreme is the so called *best-bound first* strategy in which one always considers the most promising node, i.e., the one with the highest LP value, while the other extreme is *depth first* where one goes deeper and deeper in the tree and starts backtracking only once a node is fathomed.
 All other techniques, more or less sophisticated, are basically hybrids around these two ideas.

2. **Variable selection:**
 The variable selection problem is the one of deciding how to partition the current node, i.e., on which variable to branch on in order to create the two children.

 For a long time, a classical choice has been branching on the most fractional variable, i.e., in the 0-1 case the closest to 0.5.
1. **Node selection:**
 This is very classical: one extreme is the so called best-bound first strategy in which one always considers the most promising node, i.e., the one with the highest LP value, while the other extreme is depth first where one goes deeper and deeper in the tree and starts backtracking only once a node is fathomed.
 All other techniques, more or less sophisticated, are basically hybrids around these two ideas.

2. **Variable selection:**
 The variable selection problem is the one of deciding how to partition the current node, i.e., on which variable to branch on in order to create the two children.

 For a long time, a classical choice has been branching on the most fractional variable, i.e., in the 0-1 case the closest to 0.5.
 That rule has been computationally shown to be worse than a complete random choice [Achterberg et al. 2005]. However, it is of course very easy to evaluate.
MIP Building Blocks: Branching (cont.d)

1. **Node selection:**
 This is very classical: one extreme is the so called best-bound first strategy in which one always considers the most promising node, i.e., the one with the highest LP value, while the other extreme is depth first where one goes deeper and deeper in the tree and starts backtracking only once a node is fathomed.
 All other techniques, more or less sophisticated, are basically hybrids around these two ideas.

2. **Variable selection:**
 The variable selection problem is the one of deciding how to partition the current node, i.e., on which variable to branch on in order to create the two children.

 For a long time, a classical choice has been branching on the most fractional variable, i.e., in the 0-1 case the closest to 0.5.
 That rule has been computationally shown to be worse than a complete random choice [Achterberg et al. 2005]. However, it is of course very easy to evaluate.

 In order to devise stronger criteria one has to do much more work.
MIP Building Blocks: Branching (cont.d)

2. **Variable selection** (cont.d):
 The extreme is the so called *strong branching* technique [Applegate et al. 2007; Linderoth & Savelsbergh 1999].
2. **Variable selection (cont.d):**
 The extreme is the so called **strong branching** technique [Applegate et al. 2007; Lideroth & Savelsbergh 1999].

 In its full version, at any node one has to simulate branch on each candidate fractional variable and select the one on which the **improvement** (decrease) in the bound on the left branch times the one on the right branch is the **maximum**.

 Of course, this is in general computationally unpractical (discussed later) but all MIP solvers implement lighter versions of this scheme.
2. **Variable selection** (cont.d):
 The extreme is the so called **strong branching** technique [Applegate et al. 2007; Linderoth & Savelsbergh 1999].

 In its full version, at any node one has to simulate branch on each candidate fractional variable and select the one on which the **improvement** (decrease) in the bound on the left branch times the one on the right branch is the **maximum**.

 Of course, this is in general computationally unpractical (discussed later) but all MIP solvers implement lighter versions of this scheme.

 Another sophisticated technique is **pseudocost branching** [Benichou et al. 1971] that keeps a **history of the success** (in terms of the change in the LP relaxation value) of the branchings already performed on each variable as an indication of the quality of the variable itself.
MIP Building Blocks: Branching (cont.d)

2. **Variable selection (cont.d):**
 The extreme is the so called strong branching technique [Applegate et al. 2007; Linderoth & Savelsbergh 1999].

 In its full version, at any node one has to simulate branch on each candidate fractional variable and select the one on which the improvement (decrease) in the bound on the left branch times the one on the right branch is the maximum.

 Of course, this is in general computationally unpractical (discussed later) but all MIP solvers implement lighter versions of this scheme.

 Another sophisticated technique is pseudocost branching [Benichouet al. 1971] that keeps a history of the success (in terms of the change in the LP relaxation value) of the branchings already performed on each variable as an indication of the quality of the variable itself.

 The most recent effective and sophisticated method, called reliability branching [Achterberg et al. 2005], integrates strong and pseudocost branchings by defining a reliability threshold, i.e., a level below which the information of the pseudocosts is not considered accurate enough and some strong branching is performed.
MIP Building Blocks: Primal Heuristics

- The last 5 to 10 years have seen a tremendous improvement in the capability of primal heuristics to find very good (almost optimal) solutions early in the tree.
MIP Building Blocks: Primal Heuristics

- The last 5 to 10 years have seen a tremendous improvement in the capability of primal heuristics to find very good (almost optimal) solutions early in the tree.

- However, a very meaningful experiment [Achterberg 2007] has shown that even the knowledge of the optimal solution from the beginning of the search only improves on average the running time of a MIP solver only by a factor of 2.
MIP Building Blocks: Primal Heuristics

• The last 5 to 10 years have seen a tremendous improvement in the capability of primal heuristics to find very good (almost optimal) solutions early in the tree.

• However, a very meaningful experiment [Achterberg 2007] has shown that even the knowledge of the optimal solution from the beginning of the search only improves on average the running time of a MIP solver only by a factor of 2.

• In other words, heuristics largely impact on the user perception of the quality of a solver, and are fundamental in the real-world context.
The last 5 to 10 years have seen a tremendous improvement in the capability of primal heuristics to find very good (almost optimal) solutions early in the tree.

However, a very meaningful experiment [Achterberg 2007] has shown that even the knowledge of the optimal solution from the beginning of the search only improves on average the running time of a MIP solver only by a factor of 2.

In other words, heuristics largely impact on the user perception of the quality of a solver, and are fundamental in the real-world context.

The primal heuristics implemented in the solvers go from very light and easy, as variations of the classical rounding of the LP solution, to much more heavy and complex, like local search and metaheuristics.

Details on these latter classes of heuristics will be discussed in the third part of the course.
MIP Solvers: exploiting multiple cores

- The branch-and-bound algorithm is a natural one to parallelize, as nodes of the search tree may be processed independently.
MIP Solvers: exploiting multiple cores

- The branch-and-bound algorithm is a natural one to parallelize, as nodes of the search tree may be processed independently.
- The two types of parallel MIP research can be loosely categorized based on the type of parallel computing architecture used:
 1. Distributed-memory architectures rely on message passing to communicate results of the algorithm.
 2. Shared-memory computers communicate information among CPU’s by reading from and writing to a common memory pool.
MIP Solvers: exploiting multiple cores

• The branch-and-bound algorithm is a natural one to parallelize, as nodes of the search tree may be processed independently.

• The two types of parallel MIP research can be loosely categorized based on the type of parallel computing architecture used:
 1. Distributed-memory architectures rely on message passing to communicate results of the algorithm.
 2. Shared-memory computers communicate information among CPU’s by reading from and writing to a common memory pool.

• In parallel branch-and-bound, the order in which node computations are completed can have a significant impact on performance, and often lead to anomalous behavior: one can run the same instance, with the same parameter settings, and achieve very different results in terms of nodes evaluated and CPU time.
MIP Solvers: exploiting multiple cores

- The branch-and-bound algorithm is a natural one to parallelize, as nodes of the search tree may be processed independently.
- The two types of parallel MIP research can be loosely categorized based on the type of parallel computing architecture used:
 1. Distributed-memory architectures rely on message passing to communicate results of the algorithm.
 2. Shared-memory computers communicate information among CPU’s by reading from and writing to a common memory pool.
- In parallel branch-and-bound, the order in which node computations are completed can have a significant impact on performance, and often lead to anomalous behavior: one can run the same instance, with the same parameter settings, and achieve very different results in terms of nodes evaluated and CPU time.
- To combat this undesirable behavior, modern (shared-memory-based) MIP software has introduced appropriate synchronization points in the algorithm to ensure reproducible behavior in a parallel environment. Some overhead is introduced by these synchronization mechanisms.
MIP Solvers: exploiting multiple cores

- The branch-and-bound algorithm is a natural one to parallelize, as nodes of the search tree may be processed independently.
- The two types of parallel MIP research can be loosely categorized based on the type of parallel computing architecture used:
 1. Distributed-memory architectures rely on message passing to communicate results of the algorithm.
 2. Shared-memory computers communicate information among CPU’s by reading from and writing to a common memory pool.
- In parallel branch-and-bound, the order in which node computations are completed can have a significant impact on performance, and often lead to anomalous behavior: one can run the same instance, with the same parameter settings, and achieve very different results in terms of nodes evaluated and CPU time.
- To combat this undesirable behavior, modern (shared-memory-based) MIP software has introduced appropriate synchronization points in the algorithm to ensure reproducible behavior in a parallel environment. Some overhead is introduced by these synchronization mechanisms.
- However, the most intriguing development associated with the availability of multiple cores is the fact of exploiting them for doing different “things”, not different nodes. In other words, to run different algorithmic strategies on different cores and/or use them to learn what is the best.
MIP Evolution, a development viewpoint

• **Solving** an MIP to optimality is *only one aspect of using an MIP solver for applications*, sometimes not the most important one (discussed later).
MIP Evolution, a development viewpoint

- Solving an MIP to optimality is only one aspect of using an MIP solver for applications, sometimes not the most important one (discussed later). Nowadays MIP solvers include useful tools for complex algorithmic design and data and model analysis. Some of them are:
Solving an MIP to optimality is only one aspect of using an MIP solver for applications, sometimes not the most important one (discussed later). Nowadays MIP solvers include useful tools for complex algorithmic design and data and model analysis. Some of them are:

- automatic tuning of the parameters:
 the number of parameters (corresponding to different algorithmic options) makes the hand-tuning complex but it guarantees great flexibility
Solving an MIP to optimality is only one aspect of using an MIP solver for applications, sometimes not the most important one (discussed later). Nowadays MIP solvers include useful tools for complex algorithmic design and data and model analysis. Some of them are:

- automatic tuning of the parameters:
 the number of parameters (corresponding to different algorithmic options) makes the hand-tuning complex but it guarantees great flexibility

- multiple solutions:
 allow flexibility and support for decision making and, as side effect, improve primal heuristics
MIP Evolution, a development viewpoint

- Solving an MIP to optimality is only one aspect of using an MIP solver for applications, sometimes not the most important one (discussed later). Nowadays MIP solvers include useful tools for complex algorithmic design and data and model analysis. Some of them are:

 - automatic tuning of the parameters:
 the number of parameters (corresponding to different algorithmic options) makes the hand-tuning complex but it guarantees great flexibility

 - multiple solutions:
 allow flexibility and support for decision making and, as side effect, improve primal heuristics

 - detection of sources of infeasibility in the models:
 real-world models are often over constrained and sources of infeasibility must be removed [Amaldi et al. 2003; Chinneck 2001]
MIP Evolution, a development viewpoint

- Solving an MIP to optimality is only one aspect of using an MIP solver for applications, sometimes not the most important one (discussed later). Nowadays MIP solvers include useful tools for complex algorithmic design and data and model analysis. Some of them are:

 - automatic tuning of the parameters:
 the number of parameters (corresponding to different algorithmic options) makes the hand-tuning complex but it guarantees great flexibility

 - multiple solutions:
 allow flexibility and support for decision making and, as side effect, improve primal heuristics

 - detection of sources of infeasibility in the models:
 real-world models are often over constrained and sources of infeasibility must be removed [Amaldi et al. 2003; Chinneck 2001]

 - callbacks:
 allow flexibility to accommodate the user code so as to take advantage of specific knowledge
MIP Software

- We have already discussed about the historical path that led to nowadays solvers.
MIP Software

• We have already discussed about the historical path that led to nowadays solvers.

• An important aspect of the design of software for solving MIPs is the user interface. The range of purposes for MIP software is quite large, thus the need of a large number of user interfaces.
• We have already discussed about the historical path that led to nowadays solvers.

• An important aspect of the design of software for solving MIPs is the user interface. The range of purposes for MIP software is quite large, thus the need of a large number of user interfaces.

• In general, users may wish
 1. to solve MIPs using the solver as a “black box” (so-called interactive use),
 2. to call the software from a third-party package (like a modeling language as AMPL), or
 3. to embed the solver into custom applications, which would require software to have a callable library.
MIP Software

- We have already discussed about the historical path that led to nowadays solvers.

- An important aspect of the design of software for solving MIPs is the user interface. The range of purposes for MIP software is quite large, thus the need of a large number of user interfaces.

- In general, users may wish
 1. to solve MIPs using the solver as a “black box” (so-called interactive use),
 2. to call the software from a third-party package (like a modeling language as AMPL), or
 3. to embed the solver into custom applications, which would require software to have a callable library.

- Finally, the user may wish to adapt certain aspects of the algorithm, and, as already discussed, this can be achieved by callback functions, or, when the source code is available, through abstract interfaces.
1. Cplex

<table>
<thead>
<tr>
<th>Version</th>
<th>12.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfaces</td>
<td>C, C++, Java, .NET, Matlab, Python, Microsoft Excel</td>
</tr>
</tbody>
</table>

- Cplex is owned and distributed by IBM.
- A special search algorithm, called dynamic search can be used instead of branch-and-cut.
- Cplex is moving to Mixed Integer Non-Linear Programming MINLP, being already able to solve a large portion of quadratic and quadratically-constrained Mixed Integer Programs.
MIP Commercial Software

1. Cplex

<table>
<thead>
<tr>
<th>Version</th>
<th>12.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfaces</td>
<td>C, C++, Java, .NET, Matlab, Python, Microsoft Excel</td>
</tr>
</tbody>
</table>

- Cplex is owned and distributed by IBM.
- A special search algorithm, called *dynamic search* can be used instead of branch-and-cut.
- Cplex is moving to Mixed Integer Non-Linear Programming MINLP, being already able to solve a large portion of quadratic and quadratically-constrained Mixed Integer Programs.

2. Gurobi

<table>
<thead>
<tr>
<th>Version</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
<td>www.gurobi.com</td>
</tr>
<tr>
<td>Interfaces</td>
<td>C, C++, Java, Python, .NET, Matlab</td>
</tr>
</tbody>
</table>

- Gurobi Optimizer contains a relatively new MIP solver that was built from scratch to exploit modern multi-core processing technology.
- Gurobi is also available “on demand” using the Amazon Elastic Compute Cloud.
3. **LINDO**

<table>
<thead>
<tr>
<th>Version</th>
<th>6.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
<td>www.lindo.com</td>
</tr>
<tr>
<td>Interfaces</td>
<td>C, Visual Basic, Matlab, Ox</td>
</tr>
</tbody>
</table>

- LINDO Systems offers a MIP solver as part of its LINDO API.
3. **LINDO**

- **Version**: 6.1
- **Website**: www.lindo.com
- **Interfaces**: C, Visual Basic, Matlab, Ox

- LINDO Systems offers a MIP solver as part of its LINDO API.

4. **Mosek**

- **Version**: 6.0
- **Website**: www.mosek.com
- **Interfaces**: C, C++, Java, .NET, Python

- MOSEK ApS is a company specializing in generic mathematical optimization software.
- Mosek suite is especially powerful for MINLP and is available through GAMS.
3. LINDO

<table>
<thead>
<tr>
<th>Version</th>
<th>6.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
<td>www.lindo.com</td>
</tr>
<tr>
<td>Interfaces</td>
<td>C, Visual Basic, Matlab, Ox</td>
</tr>
</tbody>
</table>

- LINDO Systems offers a MIP solver as part of its LINDO API.

4. Mosek

<table>
<thead>
<tr>
<th>Version</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
<td>www.mosek.com</td>
</tr>
<tr>
<td>Interfaces</td>
<td>C, C++, Java, .NET, Python</td>
</tr>
</tbody>
</table>

- MOSEK ApS is a company specializing in generic mathematical optimization software.
- Mosek suite is especially powerful for MINLP and is available through GAMS.

5. XPRESS-MP

<table>
<thead>
<tr>
<th>Version</th>
<th>7.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfaces</td>
<td>C, C++, Java, .NET, VBA</td>
</tr>
</tbody>
</table>

- A unique feature of XPRESS-MP is that it offers an option to branch into general (split) disjunctions, or to search for special structures on which to branch.
MIP Noncommercial Software

1. BLIS

<table>
<thead>
<tr>
<th>License</th>
<th>Common Public License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>0.91</td>
</tr>
<tr>
<td>Website</td>
<td>https://projects.coin-or.org/CHiPPS</td>
</tr>
<tr>
<td>Language</td>
<td>C++</td>
</tr>
</tbody>
</table>

- Open-source MIP solver available as part of the COIN-OR project.
- Built on top of the COIN-OR High-Performance Parallel Search Framework (CHiPPS), it runs on a distributed memory platforms.
- LPs are solved using the COIN-OR linear programming Solver (Clp).
1. **BLIS**

 - **License**: Common Public License
 - **Version**: 0.91
 - **Website**: https://projects.coin-or.org/CHiPPS
 - **Language**: C++

 - Open-source MIP solver available as part of the COIN-OR project.
 - Built on top of the COIN-OR High-Performance Parallel Search Framework (CHiPPS), it runs on a distributed memory platforms.
 - LPs are solved using the COIN-OR linear programming Solver (Clp).

2. **CBC**

 - **License**: Common Public License
 - **Version**: 2.5
 - **Website**: https://projects.coin-or.org/Cbc
 - **Language**: C++

 - Open-source MIP solver distributed under the COIN-OR project and built from many COIN components, including the COIN-OR Clp.
3. **GLPK**

<table>
<thead>
<tr>
<th>License</th>
<th>GNU General Public License (GPL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>4.44</td>
</tr>
<tr>
<td>Language</td>
<td>C</td>
</tr>
</tbody>
</table>

- The software distinguishes itself through the large number of community-built interfaces available.
3. **GLPK**

<table>
<thead>
<tr>
<th>License</th>
<th>GNU General Public License (GPL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>4.44</td>
</tr>
<tr>
<td>Language</td>
<td>C</td>
</tr>
</tbody>
</table>

- The software distinguishes itself through the large number of community-built interfaces available.

4. **lp_solve**

<table>
<thead>
<tr>
<th>License</th>
<th>GNU lesser general public license (LGPL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>5.5</td>
</tr>
<tr>
<td>Website</td>
<td>http://lpsolve.sourceforge.net/5.5/</td>
</tr>
<tr>
<td>Language</td>
<td>C</td>
</tr>
</tbody>
</table>

- Open source linear and integer programming solver.
3. GLPK

<table>
<thead>
<tr>
<th>License</th>
<th>GNU General Public License (GPL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>4.44</td>
</tr>
<tr>
<td>Language</td>
<td>C</td>
</tr>
</tbody>
</table>

- The software distinguishes itself through the large number of community-built interfaces available.

4. lp_solve

<table>
<thead>
<tr>
<th>License</th>
<th>GNU lesser general public license (LGPL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>5.5</td>
</tr>
<tr>
<td>Website</td>
<td>http://lpsolve.sourceforge.net/5.5/</td>
</tr>
<tr>
<td>Language</td>
<td>C</td>
</tr>
</tbody>
</table>

- Open source linear and integer programming solver.
5. **MINTO**

<table>
<thead>
<tr>
<th>License</th>
<th>Given as library only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>3.1</td>
</tr>
<tr>
<td>Website</td>
<td>http://coral.ie.lehigh.edu/minto/</td>
</tr>
<tr>
<td>Language</td>
<td>C</td>
</tr>
</tbody>
</table>

- Black-box solver and solver framework for MIP.
- Primary development of the software was done in the 1990’s: a whole generation of MIP researchers has been trained with MINTO!
5. MINTO

<table>
<thead>
<tr>
<th>License</th>
<th>Given as library only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>3.1</td>
</tr>
<tr>
<td>Website</td>
<td>http://coral.ie.lehigh.edu/minto/</td>
</tr>
<tr>
<td>Language</td>
<td>C</td>
</tr>
</tbody>
</table>

- Black-box solver and solver framework for MIP.
- Primary development of the software was done in the 1990's: a whole generation of MIP researchers has been trained with MINTO!

6. SCIP

<table>
<thead>
<tr>
<th>License</th>
<th>ZIB Academic License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>1.2</td>
</tr>
<tr>
<td>Website</td>
<td>http://scip.zib.de/</td>
</tr>
<tr>
<td>Language</td>
<td>C</td>
</tr>
</tbody>
</table>

- Developed and distributed by a team of researchers at Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB).
- SCIP is also a framework for Constraint Integer Programming and branch-cut-and-price, allowing the user significant control of the algorithm.
- Current benchmarks indicate that SCIP is likely the fastest noncommercial MIP solver.
5. **MINTO**

<table>
<thead>
<tr>
<th>License</th>
<th>Given as library only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>3.1</td>
</tr>
<tr>
<td>Website</td>
<td>http://coral.ie.lehigh.edu/minto/</td>
</tr>
<tr>
<td>Language</td>
<td>C</td>
</tr>
</tbody>
</table>

- Black-box solver and solver framework for MIP.
- Primary development of the software was done in the 1990's: a whole generation of MIP researchers has been trained with MINTO!

6. **SCIP**

<table>
<thead>
<tr>
<th>License</th>
<th>ZIB Academic License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>1.2</td>
</tr>
<tr>
<td>Website</td>
<td>http://scip.zib.de/</td>
</tr>
<tr>
<td>Language</td>
<td>C</td>
</tr>
</tbody>
</table>

- Developed and distributed by a team of researchers at Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB).
- SCIP is also a framework for Constraint Integer Programming and branch-cut-and-price, allowing the user significant control of the algorithm.
- Current benchmarks indicate that SCIP is likely the fastest noncommercial MIP solver.
7. SYMPHONY

<table>
<thead>
<tr>
<th>License</th>
<th>Common Public License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>5.2</td>
</tr>
<tr>
<td>Website</td>
<td>http://www.coin-or.org/SYMPHONY/index.htm</td>
</tr>
<tr>
<td>Language</td>
<td>C</td>
</tr>
</tbody>
</table>

- The core solution methodology of SYMPHONY is a customizable branch, cut, and price algorithm that can be executed sequentially or in parallel.
- SYMPHONY has several unique features including the capability to warm start the branch-and-bound process from a previously calculated branch-and-bound tree, even after modifying the problem data.
MIP Software: further remarks/pointers

- Any review of software features is inherently limited by the temporal nature of software itself.
MIP Software: further remarks/pointers

- Any review of software features is inherently limited by the temporal nature of software itself.

- Many of the commercial packages have free or limited cost licensing options for academics.
MIP Software: further remarks/pointers

• Any review of software features is inherently limited by the temporal nature of software itself.

• Many of the commercial packages have free or limited cost licensing options for academics.

• Hans Mittelmann has for many years run independent benchmarks of MIP software, and been publishing the results. In general, the commercial software significantly outperforms noncommercial software, but no conclusion is possible on the relative performance of different commercial systems. See http://plato.asu.edu/ftp/milpf.html.
MIP Software: further remarks/pointers

- Any review of software features is inherently limited by the temporal nature of software itself.

- Many of the commercial packages have free or limited cost licensing options for academics.

- Hans Mittelmann has for many years run independent benchmarks of MIP software, and been publishing the results. In general, the commercial software significantly outperforms noncommercial software, but no conclusion is possible on the relative performance of different commercial systems. See http://plato.asu.edu/ftp/milpf.html.

- The most recent version of MIP library, MIPLIB 2010 http://miplib.zib.de/, not only provides problems and data, but it includes, for the first time, scripts to run automated tests in a predefined way, and a solution checker to test the accuracy of provided solutions using exact arithmetic [Koch et al. 2011].
MIP Software: further remarks/pointers

• Any review of software features is inherently limited by the temporal nature of software itself.

• Many of the commercial packages have free or limited cost licensing options for academics.

• Hans Mittelmann has for many years run independent benchmarks of MIP software, and been publishing the results. In general, the commercial software significantly outperforms noncommercial software, but no conclusion is possible on the relative performance of different commercial systems. See http://plato.asu.edu/ftp/milpf.html.

• The most recent version of MIP library, MIPLIB 2010 http://miplib.zib.de/, not only provides problems and data, but it includes, for the first time, scripts to run automated tests in a predefined way, and a solution checker to test the accuracy of provided solutions using exact arithmetic [Koch et al. 2011].

• NEOS, server for optimization www-neos.mcs.anl.gov/neos: A user can submit an optimization problem to the server and obtain the solution and running time statistics using the preferred solver through different interfaces.
MIP Software: further remarks/pointers

- Any review of software features is inherently limited by the temporal nature of software itself.

- Many of the commercial packages have free or limited cost licensing options for academics.

- Hans Mittelmann has for many years run independent benchmarks of MIP software, and been publishing the results. In general, the commercial software significantly outperforms noncommercial software, but no conclusion is possible on the relative performance of different commercial systems. See http://plato.asu.edu/ftp/milpf.html.

- The most recent version of MIP library, MIPLIB 2010 http://miplib.zib.de/, not only provides problems and data, but it includes, for the first time, scripts to run automated tests in a predefined way, and a solution checker to test the accuracy of provided solutions using exact arithmetic [Koch et al. 2011].

- NEOS, server for optimization www-neos.mcs.anl.gov/neos: A user can submit an optimization problem to the server and obtain the solution and running time statistics using the preferred solver through different interfaces.