SCYON Abstract

Received on: 07 07 2020

The Formation of a Stellar Association in the NGC 7000/IC 5070 Complex: Results from Kinematic Analysis of Stars and Gas

Authors:M. A. Kuhn 1, L. A. Hillenbrand 1, J. M. Carpenter 2, A. Rodrigo Avelar Menendez 1
Affiliations:(1) Department of Astronomy, California Institute of Technology, Pasadena, CA, USA; (2) Joint ALMA Observatory, Santiago, Chile
Accepted by: Astrophysical Journal
URL:https://ui.adsabs.harvard.edu/abs/2020arXiv200608622K/abstract

We examine the clustering and kinematics of young stellar objects (YSOs) in the North America/Pelican Nebulae, as revealed by Gaia astrometry, in relation to the structure and motions of the molecular gas, as indicated in molecular line maps. The Gaia parallaxes and proper motions allow us to significantly refine previously published lists of YSOs, demonstrating that many of the objects previously thought to form a distributed population turn out to be non-members. The members are subdivided into at least 6 spatio-kinematic groups, each of which is associated with its own molecular cloud component or components. Three of the groups are expanding, with velocity gradients of 0.3-0.5 km s$^{-1}$ pc$^{-1}$, up to maximum velocities of $\sim$8 km s$^{-1}$ away from the groups' centers. The two known O-type stars associated with the region, 2MASS~J20555125+4352246 and HD 199579, are rapidly escaping one of these groups, following the same position-velocity relation as the low-mass stars. We calculate that a combination of gas expulsion and tidal forces from the clumpy distribution of molecular gas could impart the observed velocity gradients within the groups. However, on a global scale, the relative motions of the groups do not appear either divergent or convergent. The velocity dispersion of the whole system is consistent with the kinetic energy gained due to gravitational collapse of the complex. Most of the stellar population has ages similar to the free-fall timescales for the natal clouds. Thus, we suggest the nearly free-fall collapse of a turbulent molecular cloud as the most likely scenario for star formation in this complex.


Back to upcoming issue