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Abstract

Functional magnetic resonance imaging (fMRI) studies often try to identify associations between lo-

calized brain activity and specific changes in cognition or behavior. In cluster-wise analysis, the researcher

tries to simultaneously (a) group neighboring voxels that display a strong response to the experiment to a

cluster and (b) estimate the strength of the response in the cluster. However, using the same data for both

steps creates a “selective inference” bias, where the observed effect diminishes in validation experiments.

Current methods that account for multivariate selection require either a very strong set of assumptions

(and have been found to produce inaccurate results), or are non-parametric with relatively low power.

Furthermore, all current methods focus on testing and do not give estimates and intervals for non-null

effects. Here, we propose to apply recently-developed multivariate selective inference techniques to the

problem of cluster-wise analysis in neuroimaging studies. Specifically, we use fast stochastic gradient

methods to compute post-selection maximum likelihood estimates and construct efficient post-selection

confidence intervals based on a profile likelihood approach. Our methods work well on both simulated

data, as well as on realistic datasets based on resting-state fMRI recordings from the 1000 Functional

Connectomes Project repository. The point estimates are shown to reduce bias and estimation error

compared to unadjusted point estimates and the confidence intervals are shown to obtain close to nom-

inal coverage rates. The computation of the estimators and confidence intervals is implemented in an

accompanying software package.
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1 Introduction

1.1 Functional MRI Studies

Functional magnetic resonance imaging (fMRI) studies often try to identify associations between localized

brain activity and specific changes in cognition or behavior. Functional MRI measures a correlate of neural

activity, the blood-oxygen-level dependent (BOLD) contrast, over a dense grid of volumized pixels (voxels)

covering the cortex. Many experimental designs can be adapted to run within the fMRI scanner, allowing

researchers to assess at each voxel the neural response to variation in the task.

Typically, a linear model would be fit to each voxel separately, summarized by a single coefficient of

interest; together, these coefficients form a spatial map of activity (first level analysis). Maps from multiple

subjects can be aligned to a template and a cross-subject linear contrast (e.g. a difference of means) on the

coefficients can be estimated at each voxel (second level analysis). For either level of analysis, the standard

goal is to identify regions within the cortex that display a strong response. For new experimental tasks, this

requires (a) identifying regions of the cortex that respond to experimental variation, and (b) estimating the

strength of the changes.

In trying to identify locally strong signal in a large stochastic map, researchers need to account for

chance effects of noise. Regional inference procedures (Friston et al. (1994), Hayasaka and Nichols (2003))

aggregate neighboring responses to share strength and reduce the number of hypotheses tested. Usually,

regional inference is based on two thresholding stages: First, the map of statistics is thresholded at a

primary threshold and voxels with statistic values below this threshold are discarded. The remaining voxels

are then organized into spatially connected regions. Finally, a summary for each region (typically the number

of voxels in the region) is calculated, and a secondary region threshold is set to control the probability of

falsely detecting regions. Regions that pass this second thresholding are reported, sorted by their summary

statistic. Estimating the effect size of a newly detected region is hard. Model selection - in our case,

defining the region of interest - can induce bias in classical estimates if both steps use the same data. Naive

implementations that do not account for region selection can greatly overestimate the magnitude of the effect

and underestimate the uncertainty in the results, producing results that diminish or even disappear in later

experiments.

Both parametric and non-parametric methods have been proposed to set the threshold for cluster size,

and an ongoing debate in the community (e.g. Eklund et al. (2016), arguing against parametric methods,

and Flandin and Friston (2016), for them) has underscored strengths and weaknesses in both approaches.

Briefly, parametric methods use approximations based on Gaussian Random Theory to derive cutoffs for the

expected cluster-size under the null. The most commonly used formula (Friston et al., 1994) is valid only for
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very high thresholds (that is, the probability under the null of crossing the threshold is small), and requires

strong assumptions on the dependence between voxels. Non-parametric approaches are based on permutation

analysis of full-brain images within the linear design. The power of these methods to detect signals is limited

in small samples and in the presence of one true large cluster, other clusters may be undetectable.

Moreover, there is no current method that can estimate the effect size for regions that were found

to be significant. Both approaches are based on the sharp null (zero-effect everywhere), making it hard

to characterize the effect of selection on the alternative. Regional null-models proposed in the statistical

literature (Heller et al., 2006; Schwartzman et al., 2011), also emphasize hypothesis testing rather than non-

null inference. This is disconcerting, because statistically significant but scientifically unimportant effects

are common in human-subject studies, where no experimental condition can be perfectly controlled.

Researchers therefore resort to reporting observed statistics of the regions, such as size or average effect in

region. These statistics are prone to selection bias, which may lead in follow up studies to diminishing effects.

To see this, define a population vector describing the mean population effect at each voxel Θ = (θ1, ..., θv),

which the observed voxel-wise effect Z = (Z1, ..., Zv) tries to estimate. (Here, each index in 1, . . . , v refers

to a point in the three dimensional grid). Then, for a given region R ⊂ V = {1, ..., v}, we can identify

the (population) effect size in the region θ̄R = |R|−1
∑
i∈R θi. The idea is that if R was selected without

seeing the data, based on a previous experiment, then Z̄R would approximate θ̄R with some added noise

(E[Z̄R] = θ̄R). However, if R was selected from the data, the observed mean Z̄R would be (upward) biased

when compared to θ̄R. As an example, if the primary threshold is c, then Z̄R ≥ c regardless of θ̄R.

1.2 Selective Inference

The field of selective inference is concerned with developing statistical methods that account for selection in

inference. While most works focus on constructing valid confidence intervals in selected models (Benjamini

and Yekutieli, 2005; Fithian et al., 2014; Lee et al., 2016; Tian et al., 2016; Weinstein et al., 2013), other recent

works have focused on estimation (Panigrahi et al., 2016; Reid et al., 2014; Routtenberg and Tong, 2015).

In the context of functional MRI studies, Rosenblatt and Benjamini (2014) and Benjamini and Meir (2014)

develop inference methods for voxel-wise analysis. Most relevant in our context are the works of Meir and

Drton (2017) who develop methods for performing selective maximum likelihood inference in multivariate

settings and the work of Benjamini et al. (2016) who construct valid confidence intervals for selected regions

in high-throughput assays.

A popular paradigm in selective inference is that of ‘conditioning on selection’. In the presence of model

selection, a quantity is only estimated if a related random variable satisfies some pre-specified conditions.
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Thus, one can capture the added uncertainty induced by model selection through conditioning on the event

of selection, in effect constraining the distribution of the data to the region in which it can be observed.

In Section 2 we describe how this paradigm can be adapted to performing inference on selected regions

in fMRI studies. Specifically we propose a novel conditional profile likelihood approach for constructing

post-selection confidence intervals. We discuss the computation of conditional maximum likelihood points

estimates (MLE) in Section 3. In Section 4 we demonstrate the validity of the proposed inference methods

using real and artificial data. Finally, in Section 5 we conclude with a discussion.

2 Selective Confidence Intervals

Let R be a set of neighboring voxels that pass screening with a pre-specified threshold c. Let ∂R ⊂ V R be

the set of voxels that are not in R, but are neighbors of voxels in R. For the region R to be detected, one of

two conditions must hold:

A+
R :=

{
Zi ≥ c, i ∈ R (internal conditions)
Zi < c, i ∈ ∂R (external conditions)

}
, A−R :=

{
Zi ≤ −c, i ∈ R (internal conditions)
Zi > −c, i ∈ ∂R (external conditions)

}
.

That is, voxels of interest may be either positively or negatively correlated with an outcome. We denote the

union of the two events by AR := A+
R ∪ A

−
R. Assuming that Z follows a multivariate normal distribution

with mean θ and covariance Σ, we can perform inference based on the post-selection distribution of ZR|AR,

which is a truncated multivariate normal distribution.

For hypothesis testing, we utilize an approach similar to that of Benjamini et al. (2016), who construct

confidence intervals based on samples from the truncated multivariate normal distribution. Under the sharp

local null model (ΘR∪∂R = 0), we can sample from {Z̄R|Z ∈ AR} and use the empirical sample from the

null to estimate the p-value of the observed average. Sampling from the truncated multivariate normal

distribution is a well studied task which can be performed efficiently, see for example Kotecha and Djuric

(1999). A similar approach can be used to form a confidence interval for θ̄R.

Let q(θR) be the probability measure determined by the multivariate normal density function with mean

θR and covariance ΣR and define θR(a) := arg inf θ̄′R=a KL(q(θR)‖q(θ′R)). As a solution for constructing valid

post-selection confidence intervals for selected regions, Benjamini et al. (2016) propose to utilize the well

known result that

PθR
(
θ̄R ∈ {a ∈ R : α/2 ≤ FθR(a)(Z̄) ≤ 1− α/2}

)
= α.

The main obstacle is that θ(a) is unknown and that a mean value a, on its own, does not fully specify a

distribution for ZR. Benjamini et al. resolve this issue by positing a specific family of alternatives defined by
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linear mapping of the mean parameter θ̄R to the population vector ΘR = θ̄R ∗ν for a profile vector satisfying∑
νi = 1. They specify ν as a function of ΣR in such a way as to ensure that the resulting confidence interval

is contiguous.

Here, we seek to employ a more rigorous profile likelihood approach (Venzon and Moolgavkar, 1988).

Define the conditional profile likelihood of θ̄R as L(θ̄R|AR) := arg maxθR L(θ̄R, θR|AR). The profile likelihood

of θ̄R defines a proper distribution for each candidate value of θ̄R. Let θ̂R,n(a) = arg maxθR Ln(a, θR|AR).

Then, it is clear that given a sequence of constrained estimators that satisfy θ̂R,n(a)→p θR(a) the resulting

confidence intervals are consistent, satisfying

lim
n→∞

PθR

(
θ̄R ∈ {a ∈ R : α/2 ≤ Fθ̂R,n(a)(Z̄) ≤ 1− α/2}

)
= α.

The parameter estimate θ̂R(a) is a constrained MLE. In general, the maximization of the conditional likeli-

hood is a non-trivial task. In the next Section, we discuss efficient techniques for computing the conditional

MLE.

3 Maximum Likelihood Inference for Selected Regions

3.1 A Stochastic Gradient Method

Assume that Z follows a multivariate normal distribution with mean θ, variance Σ and density function ϕ

and define the (unconstrained) conditional maximum likelihood estimator (MLE) for the signal in a selected

region R:

θ̂R = arg max
θR

logϕ(ZR; θR,ΣR)− logPθR(AR). (1)

The conditional MLE is given by the maximizer of the unconditional log-likelihood of ZR penalized by the

log of the probability of selecting the region R. This likelihood is notoriously difficult to maximize as the

probability of selecting R is a high-dimensional integral. To bypass the difficult likelihood, Meir and Drton

(2017) propose to use samples from the distribution of ZR|AR and approximate the conditional expectation

E(ZR|AR), which in turn can be used to approximate the gradient.

Denote by z(θR) a sample from the distribution of ZR at a parameter value generated according to the

distribution determined by θR and let {γt}∞t=1 be a deterministic sequence which satisfies
∑∞
i=1 γi = ∞,∑∞

i=1 γ
2 <∞. Then, the conditional MLE can be computed by taking optimization steps of the form

θtR = θt−1
R + γtΣ

−1
(
ZR − z(θt−1

R )
)
. (2)
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To see why the algorithm defined by (2) converges to the MLE, consider the score function of a truncated

multivariate normal distribution Σ−1(ZR − E(ZR|AR)). In (2), we replaced the conditional expectation of

ZR given AR with the sample z(θR), resulting in a stochastic gradient method (Ma and Wang, 2015). We

compute constrained MLE estimates using a similar, projected stochastic gradient method.

3.2 Inducing Smoothness

Given that the observed realization of fMRI experiments tend to be smooth, we could expect the underlying

signal to be smooth as well. However, the conditional MLE does not always yield a smooth estimate.

This may become a problem when performing constrained estimation in large clusters, as fixing the mean

leaves many degrees of freedom for the estimation routine to fit the data closely using a highly variable and

non-smooth parameter estimate.

To obtain smooth post-selection estimates, we can make use of an appropriate penalty function. Specifi-

cally, we use a Tikohonov `2 penalty which penalizes the spatial first and second differences in the estimated

mean, solving the following optimization problem:

θ̂R = arg max
θR

logϕ(ZR; θR,Σ)− logPθR(AR)− λ1‖Γ1θR‖22 − λ2‖Γ2θR‖22, (3)

where Γ1 is a matrix constructed in such a way so Γ1θR gives a vector of the first order differences in θR and

similarly Γ2θR is the vector of second order differences.

The problem remains of specifying the amount of smoothness to be induced. If we are willing to assume

that both the noise and the signal in our data are smooth, then we can let the data guide us in determining

the degree of smoothness to induce in our estimates. In particular, we specify the regularization parameters

λ1, λ2 ∈ R+ in such a way as to ensure that ‖Γ1θR‖22 ≤ λ‖Γ1ZR‖22 and ‖Γ2θR‖22 ≤ λ‖Γ2ZR‖22, where

λ ∝ ˆ̄θR/Z̄R. Thus, we estimate a signal that has a degree of smoothness proportional to the smoothness of

the observed data linearly shrunk to have the same mean as the estimated mean of the parameter. In our

simulations we use λ = 2ˆ̄θR/Z̄R.

3.3 Estimating the External Parameters

The stochastic gradient algorithm proposed in Section 3.1 calls for approximating E(ZR|AR) with a sample

from the distribution of ZR|AR. Because AR induces a truncation on both ZR and Z∂R, one cannot sample

from ZR|AR without also sampling Z∂R. In order to sample from Z∂R, we must have an estimate for θ∂R.

Despite it being a nuisance parameter, the role of θ∂R cannot be discounted as its misspecification may

result in a distorted maximum likelihood estimates and invalid hypothesis tests. Furthermore, θ∂R cannot
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be estimated directly via maximum likelihood as the upper truncation often leads to an undesirable inflation

of point estimates (Meir and Drton, 2017).

In order to overcome this issue and obtain reasonable estimate of θ∂R, we make use of our implicit

smoothness assumption on the form of the true signal. For a voxel i ∈ ∂R we find i′ = arg minj∈R d(i, j),

the nearest voxel to i in R, and assign a plug-in estimate for θi setting θ̂i = θ̂i′ . In simulations where the

underlying signal is smooth and known, we find that this neighbor plug-in method works almost as well as

plugging-in the true parameter values for the boundary.

4 Simulations

With candidate methods for performing inference in selected regions on hand, we turn to evaluating them on

relevant data sets. We conduct experiments in two data regimes: the first is based on multivariate normal

data with exponentially decaying correlation. The second is based on observed and preprocessed functional

fMRI data from multiple subjects.

4.1 Methods

4.1.1 Simulated data

In the first set of experiments, we model the signal as a smooth unimodal process and the noise as an additive

multivariate normal process. We generate an observation vector Z = (Z)i, where i is a multi-index for a

voxel in a three-dimensional cube of dimensions 11 × 11 × 9. At voxel i, we set Zi = θi + εi, for θi the

signal at voxel i and εi the noise. The noise component ε is sampled from a multivariate normal distribution

with mean zero and covariance Σij = ρ‖i−j‖
2
2 . For estimating coverage levels, we generate a smooth signal

process: first we select a multi index i∗ in the cube at random, and set θi = s exp((i− i∗)′Ω−1(i− i∗)) where

Ωk,l = 2I{k = l}+ 0.6I{k 6= l} and c is a constant that can be thought of as determining the signal to noise

ratio (snr) in the data. We vary the simulation parameters over s ∈ {0, 1, 2, 3, 4} and ρ ∈ {0.5, 0.75}.

4.1.2 fMRI data

In the second set of experiments we generate controlled two-group comparison of functional MRI data. We

obtained three-dimensional time-series data (T=119 timepoints) for N = 85 subjects from the Cambridge

Buckner dataset in the 1000 Functional Connectomes repository (Biswal et al., 2010). The data was col-

lected in resting state, meaning that no explicit cognitive task was performed. All subjects recordings were

registered to a standard cortical template (55366 voxels, embedded within a 54× 64× 50 box), and spatially
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smoothed at a bandwidth of 4mm. Following the protocol of Eklund et al. (2016), for each subject the data

were processed as if an osculating stimulus sequence was presented. The result was a t-statistic map for

each subject representing the estimated t coefficient at each voxel, for which the underlying value of the

parameter is 0. We cropped the t maps to a 11× 11× 9 cube within the cortex.

In each experiment, we sample without replacement two groups of n subjects each (A and B), and form

a map of group-average differences. Letting ε̃(j) be the three-dimensional t-map of the j’th subject, we

set ε = 1
n

∑
j∈A ε̃

(j) − 1
n

∑
j′∈B ε̃

(j′). ε is further scaled so that the standard deviation would be 1 on

average. For coverage analysis, we added a known signal as before. We vary the simulation parameters over

s ∈ {0, 1, 2, 3, 4} and n ∈ {8, 16}.

4.1.3 Algorithm

Given a simulated dataset, we follow the oft prescribed two-step inference method of applying a hard thresh-

old to the observed voxel intensities and grouping the voxels which pass the threshold into clusters. We use

two different thresholds corresponding to univariate p-values of 0.01 and 0.001. We then use the 22-point

method to group the voxels into regions, meaning that the neighbors of a voxel are the voxels that it shares

a side or an edge with, but not a corner. Note that we used the true covariance of the noise in the algorithm

and did not try to estimate it. For each detected region we compute a regularized conditional MLE as defined

in (3) with regularization parameter λ ≈ 2ˆ̄θR/Z̄R. We also report results for the naive estimate, given by

the mean of the observed voxels Z̄R.

4.2 Results

The results for the the simulated and real data are very similar, that despite the fact that the fMRI data can’t

necessarily be expected to follow a normal distribution. The comparison between the root mean squared

error (RMSE) of the naive and conditional estimators, defined as ‖ ˆ̄θR − θ̄R‖2, is depicted in Figure 1. In

each simulation we often detect more than one region, and so in order to get an estimate for typical error

in a simulation we first compute the mean of the errors in each artificial data set weighted by the sizes

of the regions, and then average over the replications. The conditional MLE exhibits lower RMSE in all

experiments. In Figure 2 we plot the bias, as defined by sign(Z̄R)(
¯̂
θR − θ̄R) for the naive and conditional

estimators. The conditional estimator mitigates much of the bias induced by the selection process, exhibiting

an upward bias of up to 1 when the signal to noise ratio is low and a downward bias of up to about −1 when

the signal ratio is high. As could be expected naive estimates exhibits a significant amount of upward bias

in all simulation settings.
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In Figure 3 we plot the coverage rates for the proposed conditional confidence intervals. The selection

adjusted confidence intervals obtain close to nominal coverage rates in all simulation settings. That, in

contrast to existing parametric tests for the significance of selected regions which are known to be sensitive

to the degree of smoothness of the data and the threshold used in the first screening step (Flandin and

Friston, 2016).

We plot the power to detect true signals in the right panel of Figure 4. In each simulation instance we only

check whether the largest signal was successfully detected. The cluster that has the largest signal is in most

cases the largest cluster detected and is often centered around i∗. We get the most power when the threshold

used for initial screening is set low and the noise is more smooth. In the experiments with fMRI data, we

also have slightly better power when the initial screening is performed with a less stringent threshold. This

can be expected, because using a lower threshold conserves more information for the conditional inference

step (Fithian et al., 2014).

5 Conclusion

In this work we developed a set of specialized computational technique for performing inference on selected

regions of interest in the context of Functional MRI studies. The proposed techniques are based on ideas

stemming from the field of selective inference. In the context of the selective inference literature, our work

introduces two novel concepts. The first, is the construction of profile likelihood confidence interval through

the computation of constrained conditional maximum likelihood estimates. The second, is that of maximizing

a penalized conditional likelihood in order to obtain better behaved point estimates.

Central motivations for this project were the works of Vul et al. (2009) who pointed out the problem

of many false findings in fMRI studies and Eklund et al. (2016) who found existing parametric methods

for performing inference in selected regions lacking. In contrast to these existing parametric methods, our

methods only assume knowledge of the selection rule and an asymptotic normality of the observed residuals.

Because we only examine one region at a time, we do not need to make restrictive assumptions regarding the

covariance structure in the entire brain image and are able to use standard covariance estimates computed

just in the selected regions. Additionally, conditioning on selection allows us to safely discard small regions,

a practice that may exacerbate the selection bias if selection is not explicitly accounted for.

In validating our methodologies, we applied them to real and artificial data. In both settings, our

confidence intervals achieved the desired nominal coverage rates. In addition, we demonstrated that the

conditional maximum likelihood estimators exhibit less bias and less estimation error compared to the naive

unadjusted estimates. Estimating the covariance poses an additional challenge to our method, and we hope
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results showing that a somewhat inflated covariance matrix estimate maintains the coverage with little

loss of power (Benjamini et al., 2016) would persist for this data. The question of whether our methods

yield a significant gain in power compared to the commonly used non-parametric methods remains to be

investigated.

There also remain some open theoretical questions regarding our computational methods. Meir and Drton

(2017) outline some conditions under which the stochastic optimization routine proposed here converges and

the conditional MLE is consistent. However, some of these assumptions are violated by the thresholding

rule utilized here. It is our conjecture that the smoothness penalty imposed on the conditional likelihood

mitigates the potential undesirable behaviors of the conditional MLE, though we have yet to provide rigorous

proof to that effect and we hope to do so in the near future.
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Figure 1: Root mean squared error for estimating the mean signals in selected regions. We
plot the mean squared error for two types of estimates, the conditional MLE (solid red line) and the naive
unadjusted estimate Z̄R (dashed blue line).
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Figure 2: Bias in estimating the mean signals in selected regions. We plot the bias for two types
of estimates, the conditional MLE (solid red line) and the naive unadjusted estimate Z̄R (dashed blue line).
While the naive estimators exhibits a significant upward bias in all simulation settings the conditional MLE
mitigates most of the bias induced by the selection process.

9



● ● ● ● ●

● ● ● ●
●

●
● ●

●

●

● ● ●

● ●

pthreshold: 0.001 pthreshold: 0.01

rho: 0.5
rho: 0.75

0 1 2 3 4 0 1 2 3 4

0.900
0.925
0.950
0.975
1.000

0.900
0.925
0.950
0.975
1.000

snr

co
ve

r
Simulated Residuals

● ● ● ● ●

●
● ● ● ●

●
● ● ● ●

●
● ● ● ●

pthreshold: 0.001 pthreshold: 0.01

grp_size: 16
grp_size: 8

0 1 2 3 4 0 1 2 3 4

0.900
0.925
0.950
0.975
1.000

0.900
0.925
0.950
0.975
1.000

snr

co
ve

r

fMRI Residuals

Figure 3: Coverage rates of selective confidence intervals. We accompany the estimate of the coverage
rate in each simulation setting with a 95% Bonferroni confidence intervals . The selection adjusted confidence
intervals obtain close to the nominal coverage rate of 95% in almost all simulation settings. The only
simulation setting in which the coverage rate was below the nominal one was when a low threshold was used
with non-smooth simulated data. However, this observed deviation is not significant and it may be due to
Monte-Carlo error.
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Figure 4: Power for detecting true signal using post-selection tests. We accompany the estimate
of the power in each simulation setting with a 95% Bonferroni adjusted confidence intervals. The power
is measured as the power to detect the signal in the selected region where the signal was largest in each
simulated dataset. The region with the most signal also tends to be the largest region. When the signal to
noise ratio is low, the selective test is quite under powered, and the power to detect true signal increases
with the ratio of signal to noise.
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