SUSY Dark Matter

at Future Collider Experiments

Werner Porod IFIC-CSIC

1

- Cosmological data and dark matter candidates
- Neutralino LSP
- Gravitino LSP
- Theoretical uncertainties
- Conclusions

Cosmological Data

 $\Omega_B = (4 \pm 0.4)\%$ $\Omega_{DM} = (23 \pm 4)\%$ $\Omega_{\Lambda} = (73 \pm 4)\%$

R.A. Knopp et al., astro-ph/0309368

Supersymmetry

Symmetry between fermions & bosons

Standard Model

Supersymmetry

 $\tilde{\gamma}, \tilde{Z}, \tilde{H}^{0}_{d}, \tilde{H}^{0}_{u} \Rightarrow \tilde{\chi}^{0}_{i}$ $\tilde{W}^{+}, \tilde{H}^{+} \Rightarrow \tilde{\chi}^{+}_{i}$

Dark Matter Candidates

L. Roszkowski, astro-ph/0404052

Dark Matter Candidates

L. Roszkowski, astro-ph/0404052

$$\tilde{\chi}_i^0 = N_{ij}(\tilde{\gamma}, \tilde{Z}, \tilde{h}_d^0, \tilde{h}_u^0)_j$$

main parameters: $M_1,\ M_2,\ \mu,\ aneta$

main interactions: • $\tilde{\gamma}$ - \tilde{f} - f, \tilde{Z} - \tilde{f} - f• \tilde{h}_d^0 - \tilde{h}_d^0 - Z, \tilde{h}_u^0 - \tilde{h}_u^0 - Z• $\tilde{h}_{d,u}^0$ - \tilde{Z} - (h^0, H^0, A^0)

Dark Matter Candidates

L. Roszkowski, astro-ph/0404052

m_{1/2} J. Feng, hep-ph/0509309

Bulk region

http://spa.desy.de/spa

dominated by \tilde{l}_R

talk by T. Lari at 'Flavour in the era of LHC', Nov.'05, CERN

squark flavour studies with ATLAS

6

talk by I. Borjanovic at 'Flavour in the era of LHC', Nov.'05, CERN

talk by I. Borjanovic at 'Flavour in the era of LHC', Nov.'05, CERN

L=100 fb ⁻¹	Fit	results		
Edge	Nominal Value	Fit Value	Syst. Error Energy Scale	Statistic Error
$m(ll)^{ m edge}$	77.077	77.024	0.08	0.05
$m(qll)^{ m edge}$	431.1	431.3	4.3	2.4
$m(ql)_{\min}^{ m edge}$	302.1	300.8	3.0	1.5
$m(ql)_{ m max}^{ m edge}$	380.3	379.4	3.8	1.8
$m(qll)^{\text{thres}}$	203.0	204.6	2.0	2.8
	$\chi^2 = \sum \chi_j^2 = \sum$	$\sum \left \frac{E_j^{\text{theory}}(\vec{m})}{\sigma_i^{\text{e}}} \right $	$\left \frac{E_{j}^{\exp}}{E_{p}} \right ^{2}$	
	$E^i_j = E^{\rm nom}_j + \epsilon$	$a_j^i \sigma_j^{\text{fit}} + b^i \sigma_j$	Escale j	
$m(\chi_1^{0}) = 96 \text{ GeV}$		~		~
$m(l_R) = 143 \text{ GeV}$	$\Delta m(\chi_1^0) = 4.8$	GeV, $\Delta 1$	$m(\chi_2^0) = 4.7$ (jeV,
$m(\chi_2^0) = 1777 \text{ GeV}$	$\Delta m(1) = 4.8$ (GeV Λ	$m(a_{\rm r}) = 8.7$ C	leV

Gjelsten, Lytken, Miller, Osland, Polesello, ATL-PHYS-2004-007

M. Berggren, F. Richard, Z. Zhang hep-ph/0510088

Stau Co-annihilation

B.C. Allanach, G. Bélanger, F. Boudjema, A. Pukhov hep-ph/0410091

10

Model	A'	C′	D'	G′
M1/2	600	400	525	375
<i>m</i> 0	107	80	101	113
tan eta	5	10	10	20
$\mu(m_Z)$	773	519	-663	485
m_{χ}	242	158	212	148
m_{e_R}	251	174	224	185
$m_{ au_1}$	249	167	217	157
Δm	7	9	5	9
$\Omega_{DM}h^2$	0.09	0.12	0.09	0.12
Optimal \sqrt{s} GeV	505	337	442	316
Error on Δm GeV	0.487	0.165	0.541	0.132
Error on $\Omega_{DM}h^2$ in %	3.4	1.8	6.9	1.6

P. Bambade, M. Berggren, F. Richard, Z. Zhang, hep-ph/00406010

Focus point

characterized: $m_0 \simeq O(1-10)$ TeV $\Rightarrow |\mu| \sim O(M_{1,2})$

 $m_{\tilde{e},\tilde{\nu}}$ from A_{FB} of $\tilde{\chi}_i^0$, $\tilde{\chi}_j^{\pm}$ (exploiting full spin information) G. Moortgat-Pick, talk at Snowmass'05 F. Richard, talks at Snowmass'05 & ILC Vienna'05

B.C. Allanach et al., hep-ph/0410091

Higgs Funnel

B.C. Allanach, G. Bélanger, F. Boudjema, A. Pukhov hep-ph/0410091

13

2nd Vienna Central European Seminar '05

Werner Porod (IFIC-Valencia)

Higgs Funnel

B.C. Allanach, G. Bélanger, F. Boudjema, A. Pukhov hep-ph/0410091

13

Incomplete list of interesting scenarios

- M. Drees, hep-ph/0502075: LEP anomalies due to light h^0 , A^0 , gives additional funnel for $m_{\tilde{\chi}_1^0}$; details of h^0 scenario can be found in A. Djouadi, M. Drees and J. L. Kneur, hep-ph/0504090
- W. de Boer hep-ph/0508108: EGRET excess of diffuse galactic γ rays, focus point like, large $\tan\beta$
- C. Boehm, A. Djouadi and M. Drees, hep-ph/9911496: light stop co-annihilation; M. Carena et al., hep-ph/0508152: remaining scalars very heavy if at the same time electroweak baryogenesis
- H. Baer et al., hep-ph/0511034, sign $(M_1) = -$ sign (M_2) , requires $\tilde{b}-\tilde{W}$ co-annihilation \rightarrow 3-body decays of $\tilde{\chi}_2^0$, enhanced $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \gamma$

^{• . . .}

NMSSM

 $MSSM + singlet \Rightarrow W_{NMSSM} = W_{MSSM}(\mu = 0) - \lambda \widehat{S} \widehat{H}_u \widehat{H}_d + \frac{1}{3} \kappa \widehat{S}^3$

additional states

- $\tilde{\chi}_i^0 = N'_{ij}(\tilde{\gamma}, \tilde{Z}, \tilde{h}_d^0, \tilde{h}_u^0, \tilde{S})_j$
- H_i^0 (i=1,2,3), A_i^0 (i=1,2) can avoid LEP bounds due to reduced couplings to Z-boson
- \Rightarrow additional possibilities to arrange for DM
 - different admixtures of $\tilde{\chi}_1^0$
 - additional resonances

Gravitino Dark Matter

$$m_{3/2} \simeq O(100) \text{ GeV}^{\dagger} \Rightarrow \text{very long-lived NLSP}$$

 $\Omega_{3/2}h^2 = \frac{m_{3/2}}{m_{NLSP}}\Omega_{NLSP}h^2$

Neutralinos: $\tilde{\chi}^0 \to \tilde{G}\gamma, \ \tilde{G}Z, \ \tilde{G}h^0$: disfavoured by BBN

Sleptons:
$$\tilde{l}_R \to \tilde{G}l$$

3-body decays $\tilde{l} \to \tilde{G}lZ$, $\tilde{G}\nu W$ also constrained by BBN

[†] J. Ellis, K. Olive, Y. Santoso, V. Spanos '03; W. Buchmüller, K. Hamaguchi, M. Ratz, T. Yanagida '04; J.L. Feng, S. Su, F. Takayama '04; J.L. Feng, B.T. Smith '04; ...

light gravitino LSP, $\tilde{\chi}_1^0$ of \tilde{l}_R NLSP

Standard thermal history of the universe:

 $\Omega_{3/2}h^2 \simeq 0.11 \left(\frac{m_{3/2}}{100 \,\mathrm{eV}}\right) \left(\frac{100}{g_*}\right) \qquad (g_* \simeq 90 - 140)$

Current data: $\Omega_M h^2 \simeq 0.134 \pm 0.006$, $\Omega_B h^2 \simeq 0.023 \pm 0.001$

 $\Rightarrow m_{3/2} \simeq 100 \text{ eV}$ if DM candidate, warm dark matter constraints from Lyman- α forest: $m_{WDM} \gtrsim 550 \text{ eV}$ (M. Viel et al., arXiv:astro-ph/0501562)

 \Rightarrow assume additional entropy production, e.g. non-standard decays of messenger particles

(E. Baltz, H. Murayama, astro-ph/0108172; M. Fujii and T. Yanagida hep-ph/0208191)

NLSP decays

conserved R-parity: $\tilde{\chi}_1^0 \to \tilde{G}\gamma$, $\tilde{l}_R \to \tilde{G}l$ $(l = e, \mu, \tau)$ decay length: O(1 m)

NLSP decays

conserved R-parity: $\tilde{\chi}_1^0 \to \tilde{G}\gamma$, $\tilde{l}_R \to \tilde{G}l$ $(l = e, \mu, \tau)$ decay length: O(1 m)

broken R-parity, e.g. by bilinear terms $W_{MSSM} + \epsilon_i \hat{L}_i \hat{H}_u$:

- neutrino data via ν - $\tilde{\chi}_i^0$ mixing without ν_R
- \tilde{G} life-time: O(10²⁸⁻³¹) Hubble times

(required by ν data)

$$\begin{array}{l} - \ \tilde{l}_R \to l \,\nu, \ \tilde{l}_R \to \tilde{G} \,l \\ - \ \tilde{\chi}_1^0 \to W^{\pm} \,l^{\mp}, \ \tilde{\chi}_1^0 \to Z^0 \,\nu, \ \tilde{\chi}_1^0 \to h^0 \,\nu \\ \tilde{\chi}_1^0 \to l_i^+ \,l_j^- \,\nu, \ \tilde{\chi}_1^0 \to q \,\bar{q} \,\nu, \ \tilde{\chi}_1^0 \to q' \,\bar{q} \,l, \ \tilde{\chi}_1^0 \to \nu \,\nu \,\nu \\ \tilde{\chi}_1^0 \to \tilde{G} \,\gamma \end{array}$$

Broken R-parity

 $\begin{aligned} & --\tan\beta = 10, \ \mu > 0, \ --\tan\beta = 10, \ \mu < 0 \\ & --\tan\beta = 35, \ \mu > 0, \ --\tan\beta = 35, \ \mu < 0 \end{aligned} \qquad m_{3/2} = 100 \text{ eV}, \ n_5 = 1 \end{aligned}$

M. Hirsch, W. Porod, D. Restrepo, hep-ph/0503059

Theoretical Uncertainties

- Numerical solution of the Boltzmann equations: up to 1%
- spectrum calculation, e.g. m_0 = 70 GeV, $m_{1/2}$ = 350 GeV, $A_0=$ 0, $\tan\beta=$ 10, $\mu>$ 0

	ISAJET7.71	SOFTSUSY 1.9	SPHENO 2.2.2	SUSPECT 2.3
$ ilde{\chi}^0_1$	136.7	140.0	139.5	140.0
$ ilde{ au_1}$	147.7	145.7	147.1	149.7
$ ilde{e}_R$	155.7	153.8	155.4	157.6
h^{O}	115.8	113.1	113.4	113.3
$m_{ ilde au_1}-m_{ ilde\chi^0_1}$	11.0	5.7	7.6	9.7
Ω	0.136	0.069	0.092	0.120

21

G. Bélanger, S. Kraml, A. Pukhov, hep-ph/0502079

 missing higher order corrections
 Supersymmetry Parameter Analysis (SPA) project: http://spa.desy.de/spa

2nd Vienna Central European Seminar '05

Conclusions

- LHC: model dependent statements, matches WMAP precision
- ILC: SUSY particles will be measured very precisely, matches PLANCK precision

22

• \Rightarrow allows for cross-checks of cosmological ideas