NLO Event Generation for Chargino Production at the ILC

based on hep-ph/0607127, hep-ph/0610401

Tania Robens in collaboration with W. Kilian, J. Reuter

RWTH Aachen

3rd Vienna Central European Seminar on Particle Physics and Quantum Field Theory, 2006

Tania Robens NLO Event Generation for Chargino Production at the ILC 3rd Vienna Central European Seminar, 2006

< 口 > < 円 > < 三 > <

Sac

Introduction and Motivation

- Standard model and supersymmetric extension
- Charginos and Neutralinos in the MSSM
- Experimental accuracy and NLO results

Inclusion of NLO results in WHIZARD

- Implementation in WHIZARD
- Photons: fixed order vs resummation
- Results

Tania Robens NLO Event Generation for Chargino Production at the ILC 3rd Vienna Central European Seminar, 2006

Sac

∃ ►

< 口 > < 同 > < 三 > <

Standard model and supersymmetric extension

Supersymmetric extension of Standard Model

Supersymmetry (SUSY):

fundamental symmetry between bosons and fermions

Motivation for SUSY:

- natural extension to the SM
- radiative corrections to Higgs mass under control (finetuning in SM)
- inclusion of gravity possible
- add-ons: Dark Matter candidates, gauge+ mass unification at high scales,...
- more "aesthetic": only Poincaré extension, natural in many string theory models

Sac

Standard model and supersymmetric extension

Supersymmetry: minimal extension (MSSM)

 $\mathsf{MSSM}: \mathsf{Only} \ 1 \ \mathsf{supersymmetry}$

 \Rightarrow each SM particle obtains "superpartner" with spin 1/2 (bosons)/ spin 0 (fermions), otherwise same quantum numbers

examples

$$e \leftrightarrow \tilde{e}, \ u \leftrightarrow \tilde{u}, \ W^i \leftrightarrow \widetilde{W}^i, \dots$$

- 2 Higgs Doublets required $H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}$, $H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}$ \Rightarrow extended Higgs sector wrt the SM
- **BUT**:Superpartners not observed \Rightarrow SUSY has to be broken
- introduces new (SUSY-breaking) parameters (MSSM: 105)
- # can be reduced by additional assumptions
- many breaking scenarios: (m)SUGRA, gauge mediation, ...

Charginos and Neutralinos in the MSSM

Chargino and Neutralino sector: Reconstruction of SUSY parameters

- Charginos χ̃_i[±] and Neutralinos χ̃_i⁰: superpositions of gauge and Higgs boson superpartners
- Chargino/ Neutralino sector: SUSY parameters at electroweak scale

 $\tan\beta,\,\mu$ (Higgs sector), $\textit{M}_{1},\,\textit{M}_{2}(\text{soft breaking terms})$

can be reconstructed from

masses of
$$\tilde{\chi}_1^{\pm}, \, \tilde{\chi}_2^{\pm}, \, \tilde{\chi}_1^0$$
, 2 σ in the $\tilde{\chi}^{\pm}$ sector

(Choi ea 98, 00, 01)

Э

Sac

(日)(四)(四)(四)(四)

- low-scale parameters + evolution to high scales (RGEs): \Rightarrow hint at SUSY breaking mechanism (Blair ea, 02)
- requires high precision in ew-scale parameter determination

Charginos and Neutralinos in the MSSM

Chargino production at the ILC

- ILC: future e⁺e⁻ collider, √s = 500 GeV (1 TeV)
 "clean" environment, low backgrounds
 ⇒ precision-machine, errors O(‰)
- Charginos: (typically) light in the MSSM \Rightarrow easily accessible at colliders (ILC/ LHC) \Leftarrow
- LO production at the ILC:

decays: typically long decay chains

e.g.
$$e^+ e^- \rightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\tau}_1^+ \widetilde{\tau}_1^- \nu_\tau \, \bar{\nu_\tau} \left(\rightarrow \tau^+ \tau^- \nu_\tau \, \bar{\nu_\tau} \, \widetilde{\chi}_1^0 \, \widetilde{\chi}_1^0 \right)$$

《口》 《词》 《문》 《문》

Sac

Experimental accuracy and NLO results

Experimental accuracy and theoretical next-to-leading-order (NLO) corrections

- experimental errors: obtained from simulation studies (LHC/ ILC study, Weiglein ea, 04)
- generate "experimental data" with known SUSY input parameters
- errors: combination of statistical and systematic errors

combined LHC + ILC: %

• Theory:

Full NLO SUSY corrections for $\sigma(ee \rightarrow \tilde{\chi} \tilde{\chi})$ at ILC: in the % regime (Fritzsche ea 04, Öller ea 04, 05)

 \Rightarrow include complete NLO contributions in analyses \Leftarrow

《口》 《詞》 《문》 《문》

Ja Cr

Experimental accuracy and NLO results

Experimental accuracy and theoretical next-to-leading-order (NLO) corrections

- experimental errors: obtained from simulation studies (LHC/ ILC study, Weiglein ea, 04)
- generate "experimental data" with known SUSY input parameters
- errors: combination of statistical and systematic errors

```
combined LHC + ILC: \%
```

• Theory:

Full NLO SUSY corrections for $\sigma(ee \rightarrow \tilde{\chi} \tilde{\chi})$ at ILC: in the % regime (Fritzsche ea 04, Öller ea 04, 05)

 \Rightarrow include complete NLO contributions in analyses \Leftarrow

Sac

Implementation in WHIZARD

From $\sigma_{\rm tot}$ to Monte Carlo event generators

MC event generators: Generate event samples (same form as experimental outcome)

- experiments: see final decay products
- need to compare with simulated event samples
- also: important irreducible background effects

(e.g. Hagiwara ea, 05)

 \Rightarrow include NLO results in Monte Carlo Generators \Leftarrow

- MC Generator WHIZARD (W. Kilian, LC-TOOL-2001-039):
- so far: LO Monte Carlo Event Generator for $2 \rightarrow n$ particle processes
- includes various physical models (SM, MSSM, non-commutative geometry, little Higgs models), initial state radiation, parton shower models,...

Implementation in WHIZARD

From $\sigma_{\rm tot}$ to Monte Carlo event generators

MC event generators: Generate event samples (same form as experimental outcome)

- experiments: see final decay products
- need to compare with simulated event samples
- also: important irreducible background effects

(e.g. Hagiwara ea, 05)

 \Rightarrow include NLO results in Monte Carlo Generators \Leftarrow

- MC Generator WHIZARD (W. Kilian, LC-TOOL-2001-039):
- so far: LO Monte Carlo Event Generator for $2 \rightarrow n$ particle processes
- includes various physical models (SM, MSSM, non-commutative geometry, little Higgs models), initial state radiation, parton shower models,...

《口》 《詞》 《문》 《문》

Sac

Implementation in WHIZARD

NLO cross section contributions

$\sigma_{\rm tot}$ contributions and dependencies:

- $\sigma_{\rm born}$
- virtual $\mathcal{O}(\alpha)$ corrections: $\sigma_{\text{virt}}(\lambda)$
- emission of soft/ hard collinear/ hard non-collinear photons:

 $\sigma_{\mathsf{soft}}(\Delta E_{\gamma}, \lambda) + \sigma_{\mathsf{hc}}(\Delta E_{\gamma}, \Delta \theta_{\gamma}) + \sigma_{2 \to 3}(\Delta E_{\gamma}, \Delta \theta_{\gamma})$

• higher order initial state radiation: $\sigma_{\text{ISR}} - \sigma_{\text{ISR}}^{\mathcal{O}(\alpha)}(Q)$ λ : photon mass , ΔE_{γ} : soft cut , $\Delta \theta_{\gamma}$: collinear angle

Implementation in WHIZARD

Including FormCalc $\mathcal{O}(\alpha)$ results in WHIZARD (1)

 inclusion in WHIZARD : split photon phase space for real photon into soft/ hard-collinear/ hard non-collinear region:

$$\sigma_{\mathsf{Born}+\gamma} = \sigma_{\mathsf{soft}} + \sigma_{\mathsf{hard, coll}} + \sigma_{\mathsf{hard, noncoll}}$$

• soft photons $(E_{\gamma} \leq \Delta E_{\gamma})$: use soft photon approximation, add to virtual contribution (\Rightarrow cancellation of IR divergencies): \Rightarrow integrate over effective matrix element in Γ_2 :

$$\sigma_{\text{Born}} + \sigma_{\text{virt}}(\lambda) + \sigma_{\text{soft}}(\Delta E_{\gamma}, \lambda) = \int d\Gamma_2 |\mathcal{M}_{\text{eff}}|^2 (\Delta E_{\gamma})$$
$$|\mathcal{M}_{\text{eff}}|^2 (\Delta E_{\gamma}) = (1 + f_s(\Delta E_{\gamma}, \lambda)) |\mathcal{M}_{\text{born}}|^2 + 2 \operatorname{Re}(\mathcal{M}_{\text{born}} \mathcal{M}^*_{\text{virt}}(\lambda))$$
$$\Delta E_{\gamma}: \text{ soft photon cut, } \lambda: \text{ photon mass}$$

in practice: create library from FormCalc code, link this to WHIZARD
 ロレータークレーション きょうきょう きょうえい
 Tania Robens NLO Event Generation for Chargino Production at the ILC 3rd Vienna Central European Seminar, 2006

Implementation in WHIZARD

Including FormCalc $\mathcal{O}(\alpha)$ results in WHIZARD (2)

 hard collinear photons: E_γ > Δ E_γ, θ_γ ≤ Δ θ_γ use hard collinear approximation (Dittmaier ea, 1993):

$$\begin{split} \sigma_{\text{hard, coll}} &= \int_{\text{hard, coll}} d\Gamma_3 |\mathcal{M}_{2 \to 3}|^2 \\ &\longrightarrow \int d\Gamma_2 \int_0^{x_0} dx_i f_{\pm}(x_i) |\mathcal{M}_{\text{Born}}^{(\pm)}|^2(x_i, s), \end{split}$$

 $x_i \colon$ energy fraction of incoming fermion after photon radiation integrate in Γ_2

• hard, non-collinear photons: calculated exactly using $\mathcal{M}_{(2\to 3)}$ generated by separate WHIZARD run using Γ_3

Э

∃ ▶

5990

Appendix

Photons: fixed order vs resummation

Fixed order method: Result and Drawback

• corresponds to analytic results (Fritzsche ea/ Öller ea)

Photons: fixed order vs resummation

Fixed order method: Result and Drawback

- corresponds to analytic results (Fritzsche ea/ Öller ea)
- Drawback: $|\mathcal{M}_{eff}|^2 < 0$ for small values of $\frac{\Delta E_{\gamma}}{\sqrt{s}}$
- well-known problem at LEP
- \bullet ad hoc solution: set $|\mathcal{M}_{eff}|^2\,=\,0$ for these cases
- too low energy cuts: $\mathcal{O}(\alpha)$ not sufficient, leads to "wrong" $\sigma_{\rm tot}$

Tania Robens NLO Event Generation for Chargino Production at the ILC 3rd Vienna Central European Seminar, 2006

heta: angle between e^- and $\widetilde{\chi}^-$

remark: event generator specific problem $(\sigma_{tot} \ge 0)$

> <ロ > < 回 > < 目 > < 目 > < 目 > こ > こ の Q (~ 3rd Vienna Central European Seminar, 2006

Photons: fixed order vs resummation

Resumming leading logs to all orders

solution to fixed order drawback:

 \Rightarrow resumm respective contributions to all orders \Leftarrow

• in practice: subtract $\mathcal{O}(\alpha)$ soft + virtual collinear contributions in \mathcal{M}_{eff} :

$$\begin{split} |\widetilde{\mathcal{M}}_{\mathsf{eff}}|^2 &= \left. \left(1 + f_{\mathsf{s}}(\Delta E_{\gamma}) \right) |\mathcal{M}_{\mathsf{born}}|^2 \, + \, 2 \, \textit{Re}(\mathcal{M}_{\mathsf{born}} \, \mathcal{M}_{\mathsf{virt}}^*) \right. \\ &- \left. 2 \, f_{\mathsf{s}}^{\textit{ISR},\mathcal{O}(\alpha)}(\Delta E_{\gamma}) \, |\mathcal{M}_{\mathsf{born}}|^2 \end{split}$$

• add the resummed contribution by folding with ISR structure function:

$$\int d\Gamma \int_0^1 dx_1 \int_0^1 dx_2 f^{\mathsf{ISR}}(x_1) f^{\mathsf{ISR}}(x_2) |\widetilde{\mathcal{M}}_{\mathsf{eff}}|^2(s, x_i)$$

f^{ISR}(x): Initial state radiation (Jadach, Skrzypek, Z.Phys. 1991), describes collinear (real + virtual) photons in leading log accuracy
 f^{ISR,O(α)}: soft integrated O(α) contribution, a set of the set o

 $\begin{array}{l} \mbox{higher order ISR for } |\mathcal{M}_{\mbox{born}}|^2 \mbox{ as well as Re} \left(\mathcal{M}_{\mbox{born}} \ \mathcal{M}^*_{\mbox{virt}}\right) !!! \\ \mbox{ \Rightarrow new higher order effects } \leftarrow \end{array}$

Results

Results: cross sections

agrees with results in the literature (Fritzsche ea, Öller ea)

Sar

Results

A closer look: ΔE_{γ} dependence of σ_{tot}

- semianalytic (FormCalc): tests soft approximation, shifts: 2 - 5 ‰ (Δ E_γ ≤ 10 GeV)
- fixed order result (WHIZARD): same as 'sa' for $\Delta E_{\gamma} \ge 3 \,\text{GeV}$, smaller values: $|\mathcal{M}|^2 \le 0$ effects

Appendix

Sac

Results

ΔE_{γ} dependence: resummation

In summary:

shift in ΔE_{γ} leads to % effects, match ILC accuracy \Rightarrow careful choice of ΔE_{γ} , method important "best" choice: fully resummed version with low energy cut

tests: collinear photon approximation

 $\sigma_{\rm tot}$ again larger for resummation method for higher angles: second order ISR effects between 0.05° and 0.1° $(\mathcal{O}(\%))$

Tania Robens NLO Event Generation for Chargino Production at the ILC 3rd Vienna Central European Seminar, 2006

Sar

Results: simulated events

simulation results: angular distributions

Born, fixed order, resummation

!! more than 1 σ deviation !! $\sqrt{n_{\text{max}}} \approx \mathcal{O}(10^2)$; nbins = 20 Tania Robens NLO Event Generation for Chargino Production at the ILC 3rd Vienna Central European Seminar, 2006

Sac

Results: simulated events

Angular distributions: higher orders

also higher order contributions statistically significant

Summary and Outlook

- Chargino/ neutralino sector of MSSM: high precision in SUSY paramater analysis at EW scale (% at ILC)
- same size/ larger NLO corrections
- \Rightarrow include NLO results in Monte Carlo Event generators
 - resummation method for photons allows lower soft cuts/ inclusion of higher order contributions
 - NLO as well as higher order contributions significant !!
 - next steps: include NLO corrections to $\tilde{\chi}$ decays, non-factorizing contributions (start with photonic corrections in the double-pole approximation)
 - general interface to FormCalc generated matrix elements: extendable to other processes...

Tania Robens NLO Event Generation for Chargino Production at the ILC 3rd Vienna Central European Seminar, 2006

《口》 《词》 《문》 《문》

Sac

Э

5990

Summary and Outlook

THANKS TO

Wolfgang Hollik, Thomas Fritzsche, Thomas Hahn at MPI in Munich for their advice/ code/ help

 \odot Thanks for listening \odot

MSSM addenda

Superpotential and breaking parts

• Superpotential in MSSM

$$W = \bar{u}y_u QH_u - \bar{d}y_d QH_d - \bar{e}y_e LH_d + \mu H_u H_d$$

soft SUSY breaking terms, gauge sector

$$\frac{1}{2}(M_1\widetilde{B}\widetilde{B}+M_2\widetilde{W}^a\widetilde{W}^a+M_3\widetilde{g}\widetilde{g})+h.c.$$

Tania Robens NLO Event Generation for Chargino Production at the ILC 3rd Vienna Central European Seminar, 2006

< 口 > < 冊 >

MSSM addenda

Mass unification in mSUGRA and GMSB

- mSUGRA scenario
- according to Snowmass Points (Allanach ea, 02), in agreement with cosmology data/ WMAP ($\tilde{\chi}_1^0$ as DM candidate)

Results: higher order effects

\sqrt{s} dependence of different higher order contributions

Born+: only Born folded w ISR, resummation , fully resummed result

difference between Born+ and fully resummed result: multiple photon emission from interaction term

Tania Robens NLO Event Generation for Chargino Production at the ILC 3rd Vienna Central European Seminar, 2006

Sar

Results: higher order effects

Angular distribution: Do we see $|\mathcal{M}|^2 < 0$ effects ?? (\checkmark)

Reminder: $|\mathcal{M}_{eff}|^2$ behaviour $(\Delta E_{low} = 0.5 \text{ GeV})$:

angular distribution:

Tania Robens NLO Event Generation for Chargino Production at the ILC 3rd Vienna Central European Seminar, 2006

< D >

photon approximations

η , f_s , hard collinear approximation, $ISR^{O(\alpha)}$

•
$$\eta = \frac{2\alpha}{\pi} \left(\log \left(\frac{Q^2}{m_e^2} \right) - 1 \right) \quad (Q = \text{scale of process})$$

• $f_s = -\frac{\alpha}{2\pi} \sum_{i,j=e^{\pm}} \int_{|\mathbf{k}| \le \Delta \mathbf{E}} \frac{d^3k}{2\omega_k} \frac{(\pm) p_i p_j Q_i Q_j}{p_i k p_j k},$
(Denner 1992)
 $\omega_k = \sqrt{\mathbf{k}^2 + \lambda^2}, p_i \text{ initial/ final state momenta, } k: \gamma$

momentum

 \bullet hard collinear factor (± helicity conserving/ flipping):

$$f^{+}(x) = \frac{\alpha}{2\pi} \frac{1+x^2}{(1-x)} \left(\ln\left(\frac{s(\Delta\theta)^2}{4m^2}\right) - 1 \right), f^{-}(x) = \frac{\alpha}{2\pi} x.$$
(Dittmaier 1993)

۲

$$f_{s}^{ISR,\mathcal{O}(\alpha)} = \left[\int_{x_{0}}^{1} f_{ISR}(x) \, dx\right]_{\mathcal{O}(\alpha)} = \frac{\eta}{4} \left(2\ln(1-x_{0}) + x_{0} + \frac{1}{2}x_{0}^{2}\right)$$

soft region effects

ISR in its full beauty (Skrzypek ea, 91)

$$\begin{split} \Gamma_{ee}^{LL}(x,Q^2) &= \frac{\exp\left(-\frac{1}{2}\eta\gamma_E + \frac{3}{8}\eta\right)}{\Gamma\left(1 + \frac{\eta}{2}\right)} \frac{\eta}{2} \left(1 - x\right)^{\left(\frac{\eta}{2} - 1\right)} \\ &- \frac{\eta}{4} \left(1 + x\right) + \frac{\eta^2}{16} \left(-2\left(1 - x\right)\log(1 - x) - \frac{2\log x}{1 - x} + \frac{3}{2}\left(1 + x\right)\log x - \frac{x}{2} \right) \\ &- \frac{5}{2}\right) + \left(\frac{\eta}{2}\right)^3 \left[-\frac{1}{2}(1 + x)\left(\frac{9}{32} - \frac{\pi^2}{12} + \frac{3}{4}\log(1 - x) + \frac{1}{2}\log^2(1 - x)\right) \right. \\ &- \frac{1}{4}\log x \log(1 - x) + \frac{1}{16}\log^2 x - \frac{1}{4}\text{Li}_2(1 - x)\right) \\ &+ \frac{1}{2}\frac{1 + x^2}{1 - x}\left(-\frac{3}{8}\log x + \frac{1}{12}\log^2 x - \frac{1}{2}\log x \log(1 - x)\right) \\ &- \frac{1}{4}\left(1 - x\right)\left(\log(10x) + \frac{1}{4}\right) + \frac{1}{32}\left(5 - 3x\right)\log x\right]; \eta = \frac{2\alpha}{\pi}\left(\log\left(\frac{Q^2}{m_e^2}\right) - 1\right) \end{split}$$