Why Renormalizable Noncommutative Quantum Field Theories

Vincent Rivasseau

Laboratoire de Physique Théorique
Université Paris-Sud XI, Orsay

Vienne, November 30 2007
Introduction

Noncommutative Field Theory

Covariant theories, self-dual theories

Ghost Hunting

Can we get back the REAL world?

Constructive Field Theory

Conclusions
Scales in the universe

Physical phenomena occur over a wide range of scales from the Planck scale
$$\ell_P = \sqrt{\frac{\hbar G}{c^3}} \approx 1.6 \times 10^{-35} \text{m}$$
to the radius of the observable universe which in practice in comoving coordinates corresponds to about 45 billion light-years, hence around
$$4.4 \times 10^{26} \text{m} \text{ or better, } 2.7 \times 10^{61} \ell_P.$$
Scales in the universe

Physical phenomena occur over a wide range of scales from the Planck scale \(\ell_P = \sqrt{\frac{\hbar G}{c^3}} \approx 1.6 \times 10^{-35} \) m to the radius of the observable universe which in practice in comoving coordinates corresponds to about 45 billion light-years, hence around 4.4 \(10^{26} \) m or better, 2.7 \(10^{61} \ell_P \).
Scales in the universe

Physical phenomena occur over a wide range of scales from the Planck scale $\ell_P = \sqrt{\frac{\hbar G}{c^3}} \simeq 1.6 \times 10^{-35} \text{ m}$ to the radius of the observable universe which in practice in comoving coordinates corresponds to about 45 billion light-years, hence around $4.4 \times 10^{26} \text{ m}$ or better, $2.7 \times 10^{61} \ell_P$.
Scales in the universe

Physical phenomena occur over a wide range of scales from the Planck scale $\ell_P = \sqrt{\hbar G / c^3} \approx 1.6 \times 10^{-35} \text{ m}$ to the radius of the observable universe which in practice in comoving coordinates corresponds to about 45 billion light-years, hence around $4.4 \times 10^{26} \text{ m}$ or better, $2.7 \times 10^{61} \ell_P$.

The universe therefore is made of roughly 61 powers of 10 or 140 powers of e.
We have a fair knowledge of the 45 biggest scales of the universe. But the fifteen to sixteen scales between ℓ_P and 2×10^{-19} meters (about 1 Tev), make up the last true terra incognita of physics.
Terra Incognita

We have a fair knowledge of the 45 biggest scales of the universe.
Terra Incognita

We have a fair knowledge of the 45 biggest scales of the universe.
Terra Incognita

We have a fair knowledge of the 45 biggest scales of the universe.

But the fifteen to sixteen scales between ℓ_P and 2×10^{-19} meters (about 1 Tev), make up the last true terra incognita of physics.
The “last” big collider?

Next year, the Large Hadron Collider at Cern, Geneva should open up a new power of 10 to direct observation.
The “last” big collider?

Next year, the Large Hadron Collider at Cern, Geneva should open up a new power of 10 to direct observation.
The “last” big collider?

Next year, the Large Hadron Collider at Cern, Geneva should open up a new power of 10 to direct observation.

After that treat no new spectacular advance of this type is planned on terra incognita, hence we have some time to deepen our theoretical and mathematical understanding.
Why R, NC, QFT?

R because renormalizable models are the ones who survive renormalization group flows. They are the generic building blocks of physics.

NC because one cannot measure length below the Planck scale: the energy of the necessary particles would create a black hole whose horizon would hide the measurement. Fundamental uncertainties of this type mean noncommutativity of space time itself at that scale.

QFT because that's what particle physics is about at the frontier of terra incognita.

RNCQFT is probably not the ultimate theory but it seems a logical and necessary step on the road...
Why R, NC, QFT?

- R because renormalizable models are the ones who survive renormalization group flows. They are the generic building blocks of physics.

- NC because one cannot measure length below the Planck scale: the energy of the necessary particles would create a black hole whose horizon would hide the measurement. Fundamental uncertainties of this type mean noncommutativity of space time itself at that scale.

- QFT because that's what particle physics is about at the frontier of terra incognita.

RNCQFT is probably not the ultimate theory but it seems a logical and necessary step on the road...
Why R, NC, QFT?

- R because renormalizable models are the ones who survive renormalization group flows. They are the generic building blocks of physics.

- NC because one cannot measure length below the Planck scale: the energy of the necessary particles would create a black hole whose horizon would hide the measurement. Fundamental uncertainties of this type mean noncommutativity of space time itself at that scale.
Why R, NC, QFT?

- R because renormalizable models are the ones who survive renormalization group flows. They are the generic building blocks of physics.

- NC because one cannot measure length below the Planck scale: the energy of the necessary particles would create a black hole whose horizon would hide the measurement. Fundamental uncertainties of this type mean noncommutativity of space time itself at that scale.

- QFT because that’s what particle physics is about at the frontier of terra incognita.
Why R, NC, QFT?

- **R** because renormalizable models are the ones who survive renormalization group flows. They are the generic building blocks of physics.

- **NC** because one cannot measure length below the Planck scale: the energy of the necessary particles would create a black hole whose horizon would hide the measurement. Fundamental uncertainties of this type mean noncommutativity of space time itself at that scale.

- **QFT** because that’s what particle physics is about at the frontier of *terra incognita*.

RNCQFT is probably not the ultimate theory but it seems a logical and necessary step on the road...
Renormalization

The first computations in quantum field theory always ended in infinite results. Computations that could be compared to actual experiments were developed only after finding a cure for these infinities, called renormalization. Renormalization (Dyson, Feynman, Schwinger, Tomonaga...) suppressed the QFT infinities by reformulating physical laws in terms of parameters that can be observed at low energy, also called renormalized parameters. Infinities were pushed into unobservable "bare" parameters. In spite of its initial success (explanation of the Lamb shift and of the anomalous magnetic factor g^{-2} for the electron...), renormalization was not easily accepted:

- F. Dyson, one of its inventors, thought "this was just a trick we wanted to use for a few months until finding something better..."
- Mathematicians (until Alain...) considered renormalization as a kind of ill-defined recipe, which "pulled infinities under the rug..."
- In the 50's, L. Landau in the Soviet Union discovered an unexpected difficulty: the infinities thrown out through the door sort of reappeared through the window. This phenomenon has been called the "Landau ghost."
Renormalization

The first computations in quantum field theory always ended in infinite results. Computations that could be compared to actual experiments were developed only after finding a cure for these infinities, called renormalization.
Renormalization

The first computations in quantum field theory always ended in infinite results. Computations that could be compared to actual experiments were developed only after finding a cure for these infinities, called renormalization.

Renormalization (Dyson, Feynman, Schwinger, Tomonaga...) suppressed the QFT infinities by reformulating physical laws in terms of parameters that can be observed at low energy, also called renormalized parameters. Infinities were pushed into unobservable "bare" parameters. In spite of its initial success (explanation of the Lamb shift and of the anomalous magnetic factor $g - 2$ for the electron...), renormalization was not easily accepted:
Renormalization

The first computations in quantum field theory always ended in infinite results. Computations that could be compared to actual experiments were developed only after finding a cure for these infinities, called renormalization.

Renormalization (Dyson, Feynman, Schwinger, Tomonaga...) suppressed the QFT infinities by reformulating physical laws in terms of parameters that can be observed at low energy, also called renormalized parameters. Infinities were pushed into unobservable ”bare” parameters. In spite of its initial success (explanation of the Lamb shift and of the anomalous magnetic factor $g - 2$ for the electron...), renormalization was not easily accepted:

- F. Dyson, one of its inventors, thought “this was just a trick we wanted to use for a few months until finding something better...”
Renormalization

The first computations in quantum field theory always ended in infinite results. Computations that could be compared to actual experiments were developed only after finding a cure for these infinities, called renormalization.

Renormalization (Dyson, Feynman, Schwinger, Tomonaga...) suppressed the QFT infinities by reformulating physical laws in terms of parameters that can be observed at low energy, also called renormalized parameters. Infinities were pushed into unobservable ”bare” parameters. In spite of its initial success (explanation of the Lamb shift and of the anomalous magnetic factor $g - 2$ for the electron...), renormalization was not easily accepted:

- F. Dyson, one of its inventors, thought “this was just a trick we wanted to use for a few months until finding something better...”
- Mathematicians (until Alain...) considered renormalization as a kind of ill-defined recipe, which “pulled infinities under the rug...”
Renormalization

The first computations in quantum field theory always ended in infinite results. Computations that could be compared to actual experiments were developed only after finding a cure for these infinities, called renormalization.

Renormalization (Dyson, Feynman, Schwinger, Tomonaga...) suppressed the QFT infinities by reformulating physical laws in terms of parameters that can be observed at low energy, also called renormalized parameters. Infinities were pushed into unobservable ”bare” parameters. In spite of its initial success (explanation of the Lamb shift and of the anomalous magnetic factor $g - 2$ for the electron...), renormalization was not easily accepted:

- F. Dyson, one of its inventors, thought “this was just a trick we wanted to use for a few months until finding something better…”
- Mathematicians (until Alain...) considered renormalization as a kind of ill-defined recipe, which “pulled infinities under the rug…”
- In the 50’s, L. Landau in the Soviet Union discovered an unexpected difficulty: the infinities thrown out through the door sort of reappeared through the window. This phenomenon has been called the “Landau ghost”.
The Landau ghost
The Landau ghost

Landau discovered that the electrodynamic coupling became infinite at a large but finite energy scale, just like a particle in the flow of a quadratic vector field goes to infinity in a finite time. Quantum Field Theory therefore did not seem consistent at high energy!
The Landau ghost

Landau discovered that the electrodynamic coupling became \textit{infinite} at a large but \textit{finite} energy scale, just like a particle in the flow of a quadratic vector field goes to infinity in a finite time. Quantum Field Theory therefore did not seem consistent at high energy!
Ordinary ϕ^4_4 QFT
Ordinary ϕ^4 QFT

The simplest renormalizable quantum field theory, ϕ^4, is defined on Euclidean space \mathbb{R}^4 through its Schwinger functions which are the moments of the formal functional measure:

$$d\nu = \frac{1}{Z} e^{-\left(\frac{\lambda}{4!}\phi^4 - \frac{m^2}{2}\phi^2 - \frac{a}{2} \partial_\mu \phi \partial^\mu \phi\right)} D\phi,$$

where λ is the coupling constant, positive in order for the theory to be stable; m is the mass, which fixes the energy scale of the renormalized theory; a is called the "wave function constant", in general fixed to 1; Z is a normalization so that this measure should be a probability measure; $D\phi$ is a formal product $\prod_{x \in \mathbb{R}^4} d\phi(x)$ of Lebesgue measures at each point of \mathbb{R}^4.
Ordinary ϕ^4_4 QFT

The simplest renormalizable quantum field theory, ϕ^4_4, is defined on Euclidean space \mathbb{R}^4 through its Schwinger functions which are the moments of the formal functional measure:

$$d\nu = \frac{1}{Z} e^{-\frac{\lambda}{4!} \int \phi^4 - \frac{m^2}{2} \int \phi^2 - \frac{a}{2} \int (\partial_\mu \phi \partial^\mu \phi) D\phi,}$$

(1.1)

where
Ordinary ϕ^4_4 QFT

The simplest renormalizable quantum field theory, ϕ^4_4, is defined on Euclidean space \mathbb{R}^4 through its Schwinger functions which are the moments of the formal functional measure:

$$d\nu = \frac{1}{Z} e^{-(\lambda/4!) \int \phi^4 - (m^2/2) \int \phi^2 - (a/2) \int (\partial_\mu \phi \partial^\mu \phi) D\phi},$$

(1.1)

where

- λ is the coupling constant, positive in order for the theory to be stable;
Ordinary ϕ^4_4 QFT

The simplest renormalizable quantum field theory, ϕ^4_4, is defined on Euclidean space \mathbb{R}^4 through its Schwinger functions which are the moments of the formal functional measure:

$$d\nu = \frac{1}{Z} e^{-\frac{\lambda}{4!} \int \phi^4 - \frac{m^2}{2} \int \phi^2 - \frac{a}{2} \int (\partial_\mu \phi \partial^\mu \phi) D\phi},$$

(1.1)

where

- λ is the coupling constant, positive in order for the theory to be stable;
- m is the mass, which fixes the energy scale of the renormalized theory;
Ordinary ϕ^4_4 QFT

The simplest renormalizable quantum field theory, ϕ^4_4, is defined on Euclidean space \mathbb{R}^4 through its Schwinger functions which are the moments of the formal functional measure:

$$d\nu = \frac{1}{Z} e^{-\left(\frac{\lambda}{4!}\right) \int \phi^4 - \left(m^2/2\right) \int \phi^2 - \left(a/2\right) \int (\partial\mu \phi \partial\mu \phi) D\phi}, \quad (1.1)$$

where

► λ is the coupling constant, positive in order for the theory to be stable;
► m is the mass, which fixes the energy scale of the renormalized theory;
► a is called the "wave function constant", in general fixed to 1;
Ordinary ϕ^4_4 QFT

The simplest renormalizable quantum field theory, ϕ^4_4, is defined on Euclidean space \mathbb{R}^4 through its Schwinger functions which are the moments of the formal functional measure:

$$d\nu = \frac{1}{Z} e^{-\left(\frac{\lambda}{4!}\right) \int \phi^4 - \left(\frac{m^2}{2}\right) \int \phi^2 - \left(\frac{a}{2}\right) \int (\partial_\mu \phi \partial^\mu \phi) D\phi}, \quad (1.1)$$

where

- λ is the coupling constant, positive in order for the theory to be stable;
- m is the mass, which fixes the energy scale of the renormalized theory;
- a is called the "wave function constant", in general fixed to 1;
- Z is a normalization so that this measure should be a probability measure;
Ordinary ϕ^4 QFT

The simplest renormalizable quantum field theory, ϕ^4, is defined on Euclidean space \mathbb{R}^4 through its Schwinger functions which are the moments of the formal functional measure:

$$ d\nu = \frac{1}{Z} e^{-\left(\frac{\lambda}{4!}\right) \int \phi^4 - \left(\frac{m^2}{2}\right) \int \phi^2 - \left(\frac{a}{2}\right) \int (\partial_\mu \phi \partial^\mu \phi) \, D\phi}, \quad (1.1) $$

where

- λ is the coupling constant, positive in order for the theory to be stable;
- m is the mass, which fixes the energy scale of the renormalized theory;
- a is called the "wave function constant", in general fixed to 1;
- Z is a normalization so that this measure should be a probability measure;
- $D\phi$ is a formal product $\prod_{x \in \mathbb{R}^d} d\phi(x)$ of Lebesgue measures at each point of \mathbb{R}^4.
The ordinary ϕ_4^4 propagator
The ordinary ϕ^4_4 propagator

The covariance of the Gaussian part of the measure $d\nu$ is called the propagator

$$C(p) = \frac{1}{(2\pi)^2} \frac{1}{p^2 + m^2}, \quad C(x, y) = \int_0^\infty d\alpha e^{-\alpha m^2} \frac{e^{-|x-y|^2/4\alpha}}{\alpha^2},$$

(1.2)
The ordinary ϕ_4^4 propagator

The covariance of the Gaussian part of the measure $d\nu$ is called the propagator

$$C(p) = \frac{1}{(2\pi)^2} \frac{1}{p^2 + m^2}, \quad C(x, y) = \int_0^\infty d\alpha e^{-\alpha m^2} \frac{e^{-|x-y|^2/4\alpha}}{\alpha^2}, \quad (1.2)$$

where we recognize the heat kernel.
The ordinary ϕ^4_4 propagator

The covariance of the Gaussian part of the measure $d\nu$ is called the propagator

$$C(p) = \frac{1}{(2\pi)^2} \frac{1}{p^2 + m^2}, \quad C(x, y) = \int_0^\infty d\alpha e^{-\alpha m^2} \frac{e^{-|x-y|^2/4\alpha}}{\alpha^2}, \quad (1.2)$$

where we recognize the heat kernel.

Schwinger functions can be expanded as a sum of Feynman amplitudes (perturbation theory).
The ordinary ϕ^4_4 propagator

The covariance of the Gaussian part of the measure $d\nu$ is called the propagator

$$C(p) = \frac{1}{(2\pi)^2} \frac{1}{p^2 + m^2}, \quad C(x, y) = \int_0^\infty d\alpha e^{-\alpha m^2} \frac{e^{-|x-y|^2/4\alpha}}{\alpha^2}, \quad (1.2)$$

where we recognize the heat kernel.

Schwinger functions can be expanded as a sum of Feynman amplitudes (perturbation theory).

The best method to study and understand renormalization in QFT is to cut the propagator into a sequence of slices à la Wilson for a multi-scale analysis:

$$C = \sum_i C^i, \quad C^i(x, y) = \int_{M^{-2i}}^{M^{-2(i+1)}} d\alpha \cdots \leq K M^{2i} e^{-cM^i \|x-y\|}$$
The ordinary ϕ^4_4 propagator

The covariance of the Gaussian part of the measure $d\nu$ is called the propagator

$$C(p) = \frac{1}{(2\pi)^2} \frac{1}{p^2 + m^2}, \quad C(x, y) = \int_0^\infty d\alpha e^{-\alpha m^2} \frac{e^{-|x-y|^2/4\alpha}}{\alpha^2}, \quad (1.2)$$

where we recognize the heat kernel.

Schwinger functions can be expanded as a sum of Feynman amplitudes (perturbation theory).

The best method to study and understand renormalization in QFT is to cut the propagator into a sequence of slices à la Wilson for a multi-scale analysis:

$$C = \sum_i C^i, \quad C^i(x, y) = \int_{M^{-2i}}^{M^{-2(i+1)}} d\alpha \cdots \leq K M^{2i} e^{-cM^i \|x-y\|}$$

This leads to a factor M^{2i} per line and M^{-4i} per vertex integration $\int d^4x$.

The renormalization of ordinary ϕ^4
The renormalization of ordinary ϕ_4^4

The renormalization relies on the combination of two arguments:
The renormalization of ordinary ϕ^4_4

The renormalization relies on the combination of two arguments:

- The **locality principle**, independent of the dimension: every subgraph made of internal propagators of higher energy than its external lines looks local as the gap between the internal and external energy grows.
The renormalization of ordinary ϕ^4_4

The renormalization relies on the combination of two arguments:

- The **locality principle, independent of the dimension**: every subgraph made of internal propagators of higher energy than its external lines looks local as the gap between the internal and external energy grows.

![Diagram of a subgraph](image)
The renormalization of ordinary ϕ_4^4

The renormalization relies on the combination of two arguments:

- The locality principle, independent of the dimension: every subgraph made of internal propagators of higher energy than its external lines looks local as the gap between the internal and external energy grows.
The renormalization of ordinary ϕ^4

The renormalization relies on the combination of two arguments:

- **The locality principle, independent of the dimension**: every subgraph made of internal propagators of higher energy than its external lines looks local as the gap between the internal and external energy grows.

- **The power counting, dependent on the dimension d**: when such a subgraph is compared to a local vertex, the corresponding weight depends on the dimension and of the type of that subgraph. The sum over the gap between the internal and external energy may therefore either converge or diverge.
The renormalization of ordinary ϕ^4_4

The renormalization relies on the combination of two arguments:

- The **locality principle**, independent of the dimension: every subgraph made of internal propagators of higher energy than its external lines looks local as the gap between the internal and external energy grows.

![Diagram](image)

- The **power counting**, dependent on the dimension d: when such a subgraph is compared to a local vertex, the corresponding weight depends on the dimension and of the type of that subgraph. The sum over the gap between the internal and external energy may therefore either converge or diverge.

For instance this bubble diverges logarithmically when $d = 4$ because there are two line factors M^{2i} and a single internal integration M^{-4i}.
The unavoidable ghost?

In the case of the ϕ^4_4 theory, power counting tells us that only two and four point subgraphs do diverge (in the sense explained above). Four point functions diverge logarithmically and govern the renormalization of the coupling constant λ. The only one-loop graph which is one-particle irreducible is the bubble:

$$\lambda_{i} - \frac{1}{d\lambda_{i} di} = -\lambda_{i} + \beta(\lambda_{i})^2,$$

whose sign cannot be changed without losing stability. It corresponds to a quadratic one dimensional flow whose solution is well known to diverge in a finite time!

In the 60's all known field theories suffered from this Landau ghost.
The unavoidable ghost?

In the case of the ϕ^4_4 theory, power counting tells us that only two and four point subgraphs do diverge (in the sense explained above). Four point functions diverge logarithmically and govern the renormalization of the coupling constant λ.
The unavoidable ghost?

In the case of the ϕ^4_4 theory, power counting tells us that only two and four point subgraphs do diverge (in the sense explained above). Four point functions diverge logarithmically and govern the renormalization of the coupling constant λ.

The only one-loop graph which is one-particle irreducible is the bubble:
The unavoidable ghost?

In the case of the ϕ^4_4 theory, power counting tells us that only two and four point subgraphs do diverge (in the sense explained above). Four point functions diverge logarithmically and govern the renormalization of the coupling constant λ.

The only one-loop graph which is one-particle irreducible is the bubble:
The unavoidable ghost?

In the case of the ϕ^4 theory, power counting tells us that only two and four point subgraphs do diverge (in the sense explained above). Four point functions diverge logarithmically and govern the renormalization of the coupling constant λ.

The only one-loop graph which is one-particle irreducible is the bubble:

![Bubble Diagram]

It governs the flow equation

$$-\lambda_{i-1} = -\lambda_i + \beta(-\lambda_i)^2, \quad \frac{d\lambda_i}{di} = +\beta(\lambda_i)^2, \quad (1.3)$$

whose sign cannot be changed without losing stability. It corresponds to a quadratic one dimensional flow whose solution is well known to diverge in a finite time!
The unavoidable ghost?

In the case of the ϕ^4_4 theory, power counting tells us that only two and four point subgraphs do diverge (in the sense explained above). Four point functions diverge logarithmically and govern the renormalization of the coupling constant λ.

The only one-loop graph which is one-particle irreducible is the bubble:

$$-\lambda_{i-1} = -\lambda_i + \beta(-\lambda_i)^2, \quad \frac{d\lambda_i}{di} = +\beta(\lambda_i)^2,$$

whose sign cannot be changed without losing stability. It corresponds to a quadratic one dimensional flow whose solution is well known to diverge in a finite time! In the 60’s all known field theories sufferered from this Landau ghost.
Asymptotic Freedom
Asymptotic Freedom

In fact field theory and renormalization made in the early 70’s a spectacular comeback:
Asymptotic Freedom

In fact field theory and renormalization made in the early 70’s a spectacular comeback:

• Weinberg and Salam unified the weak and electromagnetic interactions into the formalism of Yang and Mills of non-Abelian gauge theories, which are based on an internal non commutative symmetry.
Asymptotic Freedom

In fact field theory and renormalization made in the early 70’s a spectacular comeback:

- **Weinberg** and **Salam** unified the weak and electromagnetic interactions into the formalism of **Yang** and Mills of non-Abelian gauge theories, which are based on an internal **non commutative** symmetry.
- **'tHooft** and **Veltmann** succeeded to show that these theories are still renormalisable. Their technical **tour de force** used a new technical tool, namely dimensional renormalization.
Asymptotic Freedom

In fact field theory and renormalization made in the early 70’s a spectacular comeback:

- **Weinberg** and **Salam** unified the weak and electromagnetic interactions into the formalism of **Yang** and Mills of non-Abelian gauge theories, which are based on an internal **non commutative** symmetry.

- **’t Hooft** and **Veltmann** succeeded to show that these theories are still renormalisable. Their technical **tour de force** used a new technical tool, namely dimensional renormalization.

- **’t Hooft** in an unpublished work, then **Politzer, Gross and Wilczek** discovered in 1973 that these theories did not suffer from the **Landau ghost**. **Gross** and **Wilczek** then developed and advertised a theory of this type, QCD to describe strong interactions, hence nuclear forces.
Asymptotic Freedom

In fact field theory and renormalization made in the early 70’s a spectacular comeback:

- **Weinberg** and **Salam** unified the weak and electromagnetic interactions into the formalism of **Yang** and Mills of non-Abelian gauge theories, which are based on an internal **non commutative** symmetry.

- **’tHooft** and **Veltmann** succeeded to show that these theories are still renormalisable. Their technical **tour de force** used a new technical tool, namely dimensional renormalization.

- **’t Hooft** in an unpublished work, then **Politzer**, **Gross** and **Wilczek** discovered in 1973 that these theories did not suffer from the **Landau** ghost. **Gross** and **Wilczek** then developed and advertized a theory of this type, QCD to describe strong interactions, hence nuclear forces.

- Around the same time **K. Wilson** enlarged considerably the realm of renormalization, under the (unfortunate) name of the renormalization group.
Asymptotic Freedom

In fact field theory and renormalization made in the early 70’s a spectacular comeback:

- Weinberg and Salam unified the weak and electromagnetic interactions into the formalism of Yang and Mills of non-Abelian gauge theories, which are based on an internal non commutative symmetry.
- ’t Hooft and Veltmann succeeded to show that these theories are still renormalisable. Their technical tour de force used a new technical tool, namely dimensional renormalization.
- ’t Hooft in an unpublished work, then Politzer, Gross and Wilczek discovered in 1973 that these theories did not suffer from the Landau ghost. Gross and Wilczek then developed and advertized a theory of this type, QCD to describe strong interactions, hence nuclear forces.
- Around the same time K. Wilson enlarged considerably the realm of renormalization, under the (unfortunate) name of the renormalization group.
- Happy end, all the people in red in this page got the Nobel prize...
Noncommutative Geometry

Noncommutative geometry as you all know generalizes ordinary geometry. Ordinary smooth functions or observables form a commutative algebra under ordinary multiplication. For instance in classical mechanics observables are smooth functions on phase space. Quantum mechanics replaces this commutative algebra by a noncommutative algebra of operators, where Poisson brackets become commutators. This is the first physical example of noncommutative geometry. But direct space-time itself could be of this type; for instance at a certain scale new uncertainty relations could appear between length and width which would generalize Heisenberg's relations.
Noncommutative geometry as you all know generalizes ordinary geometry. Ordinary smooth functions or observables form a commutative algebra under ordinary multiplication. For instance in classical mechanics observables are smooth functions on phase space. Quantum mechanics replaces this commutative algebra by a noncommutative algebra of operators, where Poisson brackets become commutators. This is the first physical example of noncommutative geometry.
Noncommutative geometry as you all know generalizes ordinary geometry. Ordinary smooth functions or observables form a commutative algebra under ordinary multiplication. For instance in classical mechanics observables are smooth functions on phase space. Quantum mechanics replaces this commutative algebra by a noncommutative algebra of operators, where Poisson brackets become commutators. This is the first physical example of noncommutative geometry.

But direct space-time itself could be of this type; for instance at a certain scale new uncertainty relations could appear between length and width which would generalize Heisenberg’s relations.
The Moyal space \mathbb{R}^4_θ
The Moyal space \mathbb{R}_θ^4

One of the simplest example of a noncommutative geometry is the flat (Euclidean) vector space \mathbb{R}^4 but with a constant commutator between coordinates, proportional to a new kind of “Planck constant”, θ, which would be measured in square meters.
One of the simplest example of a noncommutative geometry is the flat (Euclidean) vector space \mathbb{R}^4 but with a constant commutator between coordinates, proportional to a new kind of “Planck constant”, θ, which would be measured in square meters.

$$[x^\mu, x^\nu] = i\Theta^{\mu\nu},$$
The Moyal space \mathbb{R}^4_θ

One of the simplest example of a noncommutative geometry is the flat (Euclidean) vector space \mathbb{R}^4 but with a constant commutator between coordinates, proportional to a new kind of “Planck constant”, θ, which would be measured in square meters.

$$[x^\mu, x^\nu] = i \Theta^{\mu\nu},$$

where $\Theta^{\mu\nu}$ is an antisymmetric constant tensor which in the simplest case can be written as:

$$\Theta^{\mu\nu} = \theta \begin{pmatrix} 0 & 1 & (0) \\ -1 & 0 & (0) \\ (0) & 0 & 1 \end{pmatrix}.$$
The Moyal space \mathbb{R}^4_θ

One of the simplest example of a noncommutative geometry is the flat (Euclidean) vector space \mathbb{R}^4 but with a constant commutator between coordinates, proportional to a new kind of “Planck constant”, θ, which would be measured in square meters.

$$[x^\mu, x^\nu] = i\Theta^{\mu\nu},$$

where $\Theta^{\mu\nu}$ is an antisymmetric constant tensor which in the simplest case can be written as:

$$\Theta^{\mu\nu} = \theta \begin{pmatrix} 0 & 1 & (0) \\ -1 & 0 & (0) \\ (0) & 0 & 1 \\ (0) & (0) & -1 \end{pmatrix}$$

The unique product (associative, but noncommutative) generated by these relations on Schwarz class functions is called the Moyal-Weyl, product and writes:

$$(f \star g)(x) = \int \frac{d^d k}{(2\pi)^d} d^d y f(x + \frac{1}{2} \Theta \cdot k) g(x + y) e^{i k \cdot y}$$

$$e^{i k x} \star e^{i k' x} = e^{-\frac{1}{2} \Theta^{ij} k_i k_j} e^{i (k + k') x}$$
Quantum Field Theory on the Moyal space
Quantum Field Theory on the Moyal space

To explore quantum field theory on noncommutative geometries (or NCQFT), in particular on the simple Moyal space is suggested by string theory. It is also a quite natural extension of the Connes-Chamseddine interpretation of the standard model (in which noncommutativity is restricted to some internal simple space).
Quantum Field Theory on the Moyal space

To explore quantum field theory on noncommutative geometries (or NCQFT), in particular on the simple Moyal space is suggested by string theory. It is also a quite natural extension of the Connes-Chamseddine interpretation of the standard model (in which noncommutativity is restricted to some internal simple space).

Another deep motivation for noncommutative field theory comes from standard physics but in **strong background field**. It can be either particle physics or condensed matter physics.
Quantum Field Theory on the Moyal space

To explore quantum field theory on noncommutative geometries (or NCQFT), in particular on the simple Moyal space is suggested by string theory. It is also a quite natural extension of the Connes-Chamseddine interpretation of the standard model (in which noncommutativity is restricted to some internal simple space).

Another deep motivation for noncommutative field theory comes from standard physics but in strong background field. It can be either particle physics or condensed matter physics.

The most obvious example is the quantum Hall effect. Following the work of Susskind and Polychronakos, this system can be considered a noncommutative fluid, in need of a better understanding through a noncommutative generalization of condensed matter renormalization group.
Quantum Field Theory on the Moyal space

To explore quantum field theory on noncommutative geometries (or NCQFT), in particular on the simple Moyal space is suggested by string theory. It is also a quite natural extension of the Connes-Chamseddine interpretation of the standard model (in which noncommutativity is restricted to some internal simple space).

Another deep motivation for noncommutative field theory comes from standard physics but in strong background field. It can be either particle physics or condensed matter physics.

The most obvious example is the quantum Hall effect. Following the work of Susskind and Polychronakos, this system can be considered a noncommutative fluid, in need of a better understanding through a noncommutative generalization of condensed matter renormalization group.

But one can probably also study fruitfully other strong field problems (such as quark confinement or the growth of charged polymers under strong magnetic fields) with NCQFT techniques. This may help to tackle problems which look untractable in the ordinary geometry language simply because they correspond in that geometry to non-perturbative and non-local effects.
The ϕ^4 theory on Moyal \mathbb{R}^4_θ

- The (naive) version of ϕ^4_4 on Moyal space has for Lagrangian
The ϕ^4 theory on Moyal \mathbb{R}^4_θ

- The (naive) version of ϕ^4_4 on Moyal space has for Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial^\mu \phi \partial_\mu \phi + \frac{\mu_0^2}{2} \phi^2 + \frac{\lambda}{4!} \phi^4$$
The ϕ^4 theory on Moyal \mathbb{R}_θ^4

- The (naive) version of ϕ^4_4 on Moyal space has for Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial^\mu \phi \ast \partial_\mu \phi + \frac{\mu^2_0}{2} \phi \ast \phi + \frac{\lambda}{4} \phi \ast \phi \ast \phi \ast \phi$$
Why Renormalizable Noncommutative Quantum Field Theories, Vienne, November 25 2007
Introduction Noncommutative Field Theory Covariant theories, self-dual theories Ghost Hunting Can we get back the REAL world? Constructive Field Theory

The ϕ^4_4 theory on Moyal \mathbb{R}^4_θ

- The (naive) version of ϕ^4_4 on Moyal space has for Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial^\mu \phi \star \partial_\mu \phi + \frac{\mu_0^2}{2} \phi \star \phi + \frac{\lambda}{4} \phi \star \phi \star \phi \star \phi$$

- The Moyal vertex can be computed explicitly. It is proportional to

$$\int \prod_{i=1}^4 d^4 x^i \phi(x^i) \delta(x_1 - x_2 + x_3 - x_4) \exp \left(2i\theta^{-1} (x_1 \wedge x_2 + x_3 \wedge x_4) \right)$$
The ϕ^4 theory on Moyal \mathbb{R}^4_θ

- The (naive) version of ϕ^4_4 on Moyal space has for Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial^\mu \phi \star \partial_\mu \phi + \frac{\mu^2}{2} \phi \star \phi + \frac{\lambda}{4} \phi \star \phi \star \phi \star \phi$$

- The Moyal vertex can be computed explicitly. It is proportional to

$$\int \prod_{i=1}^4 d^4 x^i \phi(x^i) \delta(x_1 - x_2 + x_3 - x_4) \exp \left(2i\theta^{-1} (x_1 \wedge x_2 + x_3 \wedge x_4) \right)$$

- This vertex is non-local and oscillates. It has a parallelogram shape in each symplectic pair, and its oscillation is proportional to its area:
The ϕ^4 theory on Moyal \mathbb{R}^4_θ

- The (naive) version of ϕ^4 on Moyal space has for Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial^\mu \phi \star \partial_\mu \phi + \frac{\mu_0^2}{2} \phi \star \phi + \frac{\lambda}{4} \phi \star \phi \star \phi \star \phi$$

- The Moyal vertex can be computed explicitly. It is proportional to

$$\int \prod_{i=1}^4 d^4 x^i \phi(x^i) \delta(x_1 - x_2 + x_3 - x_4) \exp \left(2i\theta^{-1}(x_1 \wedge x_2 + x_3 \wedge x_4) \right)$$

- This vertex is non-local and oscillates. It has a parallelogram shape in each symplectic pair, and its oscillation is proportional to its area:
Ultraviolet-infrared mixing

- Amplitudes of planar graphs remain unchanged.

\[
\lambda \int d^4 k e^{ik\mu}k^\nu \theta^{\mu\nu}k^2 + m^2 \propto \lambda \sqrt{m^2 \tilde{p}^2} K_1(\sqrt{m^2 \tilde{p}^2}) \sim p \to 0 \quad p^{-2}
\]

These divergences increase with perturbation order. All correlation functions are affected and diverge. The theory cannot be renormalized.
Ultraviolet-infrared mixing

- Amplitudes of planar graphs remain unchanged.
- Nonplanar amplitudes create a new type of divergence, of the infrared type.
Ultraviolet-infrared mixing

- Amplitudes of planar graphs remain unchanged.
- Nonplanar amplitudes create a new type of divergence, of the infrared type. For instance,

\[
\propto \lambda \int d^4 k \frac{e^{ip \mu k^\nu} \theta_{\mu \nu}}{k^2 + m^2}
\]

\[
\propto \lambda \sqrt{\frac{m^2}{\tilde{p}^2}} K_1(\sqrt{m^2 \tilde{p}^2}) \sim_{p \to 0} p^{-2}
\]
Ultraviolet-infrared mixing

- Amplitudes of planar graphs remain unchanged.
- Nonplanar amplitudes create a new type of divergence, of the infrared type. For instance,

\[\propto \lambda \int d^4 k \frac{e^{ip^\mu k^\nu} \theta_{\mu\nu}}{k^2 + m^2} \]

\[\propto \lambda \sqrt{\frac{m^2}{\tilde{p}^2}} K_1(\sqrt{m^2\tilde{p}^2}) \sim_{p \to 0} p^{-2} \]

- These divergences increase with perturbation order.
Ultrasound-infrared mixing

- Amplitudes of planar graphs remain unchanged.
- Nonplanar amplitudes create a new type of divergence, of the infrared type. For instance,

\[
\lambda \int d^4 k \frac{e^{ip\mu k^\nu} \theta_{\mu\nu}}{k^2 + m^2}
\]

\[
\propto \lambda \sqrt{\frac{m^2}{\tilde{p}^2}} K_1(\sqrt{m^2 \tilde{p}^2}) \sim_{p\to 0} p^{-2}
\]

- These divergences increase with perturbation order.
- All correlation functions are affected and diverge.
Ultraviolet-infrared mixing

- Amplitudes of planar graphs remain unchanged.
- Nonplanar amplitudes create a new type of divergence, of the infrared type. For instance,

\[\propto \lambda \int d^4k \frac{e^{ip^\mu k^\nu} \theta_{\mu\nu}}{k^2 + m^2} \]

\[\propto \lambda \sqrt{\frac{m^2}{\tilde{p}^2}} K_1(\sqrt{m^2\tilde{p}^2}) \sim_{p \to 0} p^{-2} \]

- These divergences increase with perturbation order.
- All correlation functions are affected and diverge.
- The theory cannot be renormalized.
The Grosse-Wulkenhaar breakthrough:
The Grosse-Wulkenhaar breakthrough:

The Euclidean theory with an additional harmonic potential

\[S = \int d^4x \left(\frac{1}{2} \partial_\mu \phi \star \partial^\mu \phi + \frac{\Omega^2}{2} (\tilde{x}_\mu \phi) \star (\tilde{x}^\mu \phi) + \frac{\mu_0^2}{2} \phi \star \phi + \frac{\lambda}{4!} \phi \star \phi \star \phi \star \phi \right) (x) \]

where \(\tilde{x}_\mu = 2\Theta^{-1}_{\mu\nu} x^\nu \), is covariant under a symmetry \(p_\mu \leftrightarrow \tilde{x}_\mu \) called Langmann-Szabo symmetry and is renormalizable at every order in \(\lambda \)!
The Grosse-Wulkenhaar breakthrough:

The Euclidean theory with an additional harmonic potential

\[S = \int d^4x \left(\frac{1}{2} \partial_\mu \phi \ast \partial^\mu \phi + \frac{\Omega^2}{2} (\tilde{x}_\mu \phi) \ast (\tilde{x}^\mu \phi) + \frac{\mu_0^2}{2} \phi \ast \phi + \frac{\lambda}{4!} \phi \ast \phi \ast \phi \ast \phi \right)(x) \]

where \(\tilde{x}_\mu = 2 \Theta^{-1}_{\mu\nu} x^\nu \), is covariant under a symmetry \(p_\mu \leftrightarrow \tilde{x}_\mu \) called Langmann-Szabo symmetry and is renormalizable at every order in \(\lambda! \)
The Grosse-Wulkenhaar breakthrough:

The Euclidean theory with an additional harmonic potential

\[
S = \int d^4x \left(\frac{1}{2} \partial_\mu \phi \star \partial^\mu \phi + \frac{\Omega^2}{2}(\tilde{x}_\mu \phi) \star (\tilde{x}^\mu \phi) + \frac{\mu_0^2}{2} \phi \star \phi + \frac{\lambda}{4!} \phi \star \phi \star \phi \star \phi \right)(x)
\]

where \(\tilde{x}_\mu = 2\Theta^{-1}_{\mu\nu}x^\nu \), is covariant under a symmetry \(p_\mu \leftrightarrow \tilde{x}_\mu \) called Langmann-Szabo symmetry and is renormalizable at every order in \(\lambda \)!
The Grosse-Wulkenhaar breakthrough:

The Euclidean theory with an additional harmonic potential

\[S = \int d^4x \left(\frac{1}{2} \partial_\mu \phi \star \partial^\mu \phi + \frac{\Omega^2}{2} (\tilde{x}_\mu \phi) \star (\tilde{x}^\mu \phi) + \frac{\mu_0^2}{2} \phi \star \phi + \frac{\lambda}{4!} \phi \star \phi \star \phi \star \phi \right) (x) \]

where \(\tilde{x}_\mu = 2\Theta^{-1}_{\mu \nu} x^\nu \), is covariant under a symmetry \(p_\mu \leftrightarrow \tilde{x}_\mu \) called Langmann-Szabo symmetry and is renormalizable at every order in \(\lambda \)!

This result has now been proved through many independent methods
The Grosse-Wulkenhaar breakthrough:

The Euclidean theory with an additional harmonic potential

\[
S = \int d^4x \left(\frac{1}{2} \partial_\mu \phi \ast \partial^\mu \phi + \frac{\Omega^2}{2} (\tilde{x}_\mu \phi) \ast (\tilde{x}^\mu \phi) + \frac{\mu_0^2}{2} \phi \ast \phi + \frac{\lambda}{4!} \phi \ast \phi \ast \phi \ast \phi \right)(x)
\]

where \(\tilde{x}_\mu = 2\Theta^{-1}_{\mu\nu} x^\nu \), is covariant under a symmetry \(p_\mu \leftrightarrow \tilde{x}_\mu \) called Langmann-Szabo symmetry and is renormalizable at every order in \(\lambda \)!

This result has now been proved through many independent methods

- matrix base or "coherent states";
The Grosse-Wulkenhaar breakthrough:

The Euclidean theory with an additional harmonic potential

\[S = \int d^4x \left(\frac{1}{2} \partial_\mu \phi \star \partial^\mu \phi + \frac{\Omega^2}{2} (\tilde{x}_\mu \phi) \star (\tilde{x}^\mu \phi) + \frac{\mu_0^2}{2} \phi \star \phi + \frac{\lambda}{4!} \phi \star \phi \star \phi \star \phi \right)(x) \]

where \(\tilde{x}_\mu = 2\Theta_{\mu\nu}^{-1} x^\nu \), is covariant under a symmetry \(p_\mu \leftrightarrow \tilde{x}_\mu \) called Langmann-Szabo symmetry and is renormalizable at every order in \(\lambda \)!

This result has now been proved through many independent methods

- matrix base or "coherent states";
- direct space
The Grosse-Wulkenhaar breakthrough:

The Euclidean theory with an additional harmonic potential

\[S = \int d^4x \left(\frac{1}{2} \partial_\mu \phi \star \partial^\mu \phi + \frac{\Omega^2}{2} (\tilde{x}_\mu \phi) \star (\tilde{x}^\mu \phi) + \frac{\mu^2_0}{2} \phi \star \phi + \frac{\lambda}{4!} \phi \star \phi \star \phi \star \phi \right)(x) \]

where \(\tilde{x}_\mu = 2\Theta^{-1}_{\mu
u} x^\nu \), is covariant under a symmetry \(p_\mu \leftrightarrow \tilde{x}_\mu \) called Langmann-Szabo symmetry and is renormalizable at every order in \(\lambda \).

This result has now been proved through many independent methods

- matrix base or "coherent states";
- direct space
- parametric representation and dimensional renormalization
The Grosse-Wulkenhaar breakthrough:

The Euclidean theory with an additional harmonic potential

\[
S = \int d^4x \left(\frac{1}{2} \partial_\mu \phi \ast \partial^\mu \phi + \frac{\Omega^2}{2} (\tilde{x}_\mu \phi) \ast (\tilde{x}^\mu \phi) + \frac{\mu_0^2}{2} \phi \ast \phi + \frac{\lambda}{4!} \phi \ast \phi \ast \phi \ast \phi \right)(x)
\]

where \(\tilde{x}_\mu = 2\Theta^{-1}_{\mu\nu} x^\nu \), is covariant under a symmetry \(p_\mu \leftrightarrow \tilde{x}_\mu \) called Langmann-Szabo symmetry and is renormalizable at every order in \(\lambda \)!

This result has now been proved through many independent methods

- matrix base or "coherent states";
- direct space
- parametric representation and dimensional renormalization

Related models were explored in many papers by various subsets of an informal "MOV" group (Münster-Orsay-Vienna): Disertori, Gayral, de Goursac, Gurau, Grosse, Magnen, Malbouisson, R, Steinacker, Tanasa, Vignes-Tourneret, Wallet, Wohlgennant, Wulkenhaar...
The new propagator

\[G(x, y) = \theta^4 \Omega \left(\pi \theta \right) \int_0^\infty d\alpha e^{-\mu^2 \theta^4 \Omega \alpha^2} \left(\frac{\sinh \alpha}{\alpha^2} \exp \left(-\Omega \theta \sinh \alpha \|x - y\|^2 - \Omega \theta \tanh \alpha \left(\|x\|^2 + \|y\|^2 \right) \right) \right). \]

(2.5)

and involves the Mehler kernel rather than the heat kernel. Multiscale analysis relies again on a slicing of that propagator according to a geometric sequence:

\[G_i(x, y) = \int M^{-2(i-1)} M^{-2i} d\alpha \cdots \leq K M^2 i e^{-c_1 M^2 \|x - y\|^2 - c_2 M^{-2i} \left(\|x\|^2 + \|y\|^2 \right)} \]

The corresponding new renormalization group corresponds to a completely new mixture of the previous ultraviolet and infrared notions. Furthermore there exists only a half direction which is infinite for this RG.
The new propagator

The propagator for this theory is best understood through its parametric representation

\[G(x, y) = \frac{\theta}{4\Omega} \left(\frac{\Omega}{\pi\theta} \right) \int_0^\infty d\alpha \, e^{-\frac{\mu_0^2}{4\Omega} \alpha} \]

\[\frac{1}{(\sinh \alpha)^2} \exp \left(- \frac{\Omega}{\theta \sinh \alpha} \|x - y\|^2 - \frac{\Omega}{\theta} \tanh \frac{\alpha}{2} \left(\|x\|^2 + \|y\|^2 \right) \right) . \]
The new propagator

The propagator for this theory is best understood through its parametric representation

\[G(x, y) = \frac{\theta}{4\Omega \left(\frac{\Omega}{\pi \theta} \right)} \int_0^\infty d\alpha \ e^{-\frac{\mu^2 \theta}{4\Omega} \alpha} \Theta(\Omega \pi \theta) \int_0^\infty d\alpha \ e^{-\frac{\mu^2 \theta}{4\Omega} \alpha} \]

\[\frac{1}{(\sinh \alpha)^2} \exp \left(-\frac{\Omega}{\theta \sinh \alpha} \|x - y\|^2 - \frac{\Omega}{\theta} \tanh \frac{\alpha}{2} (\|x\|^2 + \|y\|^2) \right). \]

and involves the Mehler kernel rather than the heat kernel.
The new propagator

The propagator for this theory is best understood through its parametric representation

\[
G(x, y) = \frac{\theta}{4\Omega} \left(\frac{\Omega}{\pi\theta} \right) \int_0^\infty d\alpha \, e^{-\frac{\mu_0^2\theta}{4\Omega} \alpha} \int M^{-2(i-1)} \, d\alpha \cdots \leq KM^{2i} e^{-c_1 M^{2i} \|x-y\|^2 - c_2 M^{-2i} (\|x\|^2 + \|y\|^2)}
\] (2.4)

and involves the Mehler kernel rather than the heat kernel. Multiscale analysis relies again on a slicing of that propagator according to a geometric sequence:
The new propagator

The propagator for this theory is best understood through its parametric representation

\[G(x, y) = \frac{\theta}{4\Omega} \left(\frac{\Omega}{\pi \theta} \right) \int_0^\infty d\alpha \ e^{-\frac{\mu_0^2 \theta}{4\Omega} \alpha} \]

\[\frac{1}{(\sinh \alpha)^2} \exp \left(-\frac{\Omega}{\theta \sinh \alpha} \|x - y\|^2 - \frac{\Omega}{\theta} \tanh \frac{\alpha}{2} (\|x\|^2 + \|y\|^2) \right) . \] (2.5)

and involves the Mehler kernel rather than the heat kernel.

Multiscale analysis relies again on a slicing of that propagator according to a geometric sequence:

\[G^i(x, y) = \int_{M^{-2i}}^{M^{-2(i-1)}} d\alpha \cdots \leq KM^{2i} e^{-c_1 M^{2i} \|x - y\|^2 - c_2 M^{-2i} (\|x\|^2 + \|y\|^2)} \]

The corresponding new renormalization group corresponds to a completely new mixture of the previous ultraviolet and infrared notions. Furthermore there exists only a half direction which is infinite for this RG.
Renormalisability
Renormalisability

It follows again from the combination of two arguments. A new Moyality principle replaces locality:
Renormalisability

It follows again from the combination of two arguments. A new Moyality principle replaces locality:
Renormalisability

It follows again from the combination of two arguments. A new Moyality principle replaces locality:
Renormalisability

It follows again from the combination of two arguments. A new **Moyality principle** replaces **locality**:

This principle applies only to **planar graphs with a single external face**.
Planarity and Power Counting

There is also a new power counting. One must take into account cyclicity of the vertex hence graphs have ribbon lines.
Planarity and Power Counting

There is also a new power counting. One must take into account cyclicity of the vertex hence graphs have ribbon lines.

\[\omega = \frac{d}{2} (F - EF) - L = \left(2 - \frac{E}{2} \right) - 4g - 2 (EF - 1) \] si \(d = 4 \), où

- \(V \) is the numbers of vertices,
Planarity and Power Counting

There is also a new power counting. One must take into account cyclicity of the vertex hence graphs have ribbon lines.

\[\omega = \frac{d}{2} (F - EF) - L = \left(2 - \frac{E}{2} \right) - 4g - 2(EF - 1) \quad \text{si} \quad d = 4, \quad \text{où} \]

- \(V \) is the numbers of vertices,
- \(L \) is the number of lines or propagators,
Planarity and Power Counting

There is also a new **power counting**. One must take into account **cyclicity of the vertex** hence graphs have **ribbon lines**.

\[\omega = \frac{d}{2} (F - EF) - L = \left(2 - \frac{E}{2} \right) - 4g - 2(EF - 1) \quad \text{si } d = 4, \text{ où} \]

- \(V \) is the numbers of vertices,
- \(L \) is the number of lines or propagators,
- \(F \) is the number of external faces (following the ribbons borders),
Planarity and Power Counting

There is also a new power counting. One must take into account cyclicity of the vertex hence graphs have ribbon lines.

\[\omega = \frac{d}{2} (F - EF) - L = \left(2 - \frac{E}{2}\right) - 4g - 2(EF - 1) \text{ si } d = 4, \text{ où} \]

- \(V \) is the numbers of vertices,
- \(L \) is the number of lines or propagators,
- \(F \) is the number of external faces (following the ribbons borders),
- \(E \) is the number of external lines,
Planarity and Power Counting

There is also a new power counting. One must take into account cyclicity of the vertex hence graphs have ribbon lines.

\[\omega = \frac{d}{2} (F - EF) - L = \left(2 - \frac{E}{2} \right) - 4g - 2(EF - 1) \text{ si } d = 4, \text{ où} \]

- \(V \) is the numbers of vertices,
- \(L \) is the number of lines or propagators,
- \(F \) is the number of external faces (following the ribbons borders),
- \(E \) is the number of external lines,
- \(g \) is the genus defined by Euler’s relation \(\chi = 2 - 2g = V - L + F \),
Planarity and Power Counting

There is also a new power counting. One must take into account cyclicity of the vertex hence graphs have ribbon lines.

\[\omega = \frac{d}{2} (F - EF) - L = \left(2 - \frac{E}{2}\right) - 4g - 2(EF - 1) \quad \text{si} \quad d = 4, \quad \text{où} \]

- \(V \) is the numbers of vertices,
- \(L \) is the number of lines or propagators,
- \(F \) is the number of external faces (following the ribbons borders),
- \(E \) is the number of external lines,
- \(g \) is the genus defined by Euler’s relation \(\chi = 2 - 2g = V - L + F \),
- \(EF \) is the number of external faces (i.e. containing arriving external lines).
Examples of graphs
Examples of graphs

\[g = 1 - \frac{V - L + F}{2}, \quad \omega = 2 - \frac{E}{2} - 4g - 2(EF - 1) \]
Examples of graphs

\[g = 1 - (V - L + F)/2, \quad \omega = 2 - E/2 - 4g - 2(EF - 1) \]
Examples of graphs

\[g = 1 - (V - L + F)/2, \quad \omega = 2 - E/2 - 4g - 2(EF - 1) \]
Examples of graphs

\[g = 1 - (V - L + F)/2, \quad \omega = 2 - E/2 - 4g - 2(\ EF - 1) \]

\[
\begin{array}{c}
\text{V=3} \\
\text{L=3} \\
\text{F=2} \\
\text{E=6} \\
\text{EF=2}
\end{array}
\]
Examples of graphs

\[g = 1 - \frac{(V - L + F)}{2}, \quad \omega = 2 - \frac{E}{2} - 4g - 2(EF - 1) \]

\[
\begin{align*}
V &= 3 \\
L &= 3 \\
F &= 2 \\
E &= 6 \\
EF &= 2
\end{align*}
\]

\[g = 0, \quad \omega = -3 \]
Examples of graphs

\[g = 1 - \frac{(V - L + F)}{2}, \quad \omega = 2 - \frac{E}{2} - 4g - 2(\text{EF} - 1) \]

\[\begin{align*}
V &= 3 \\
L &= 3 \\
F &= 2 \\
E &= 6 \\
\text{EF} &= 2
\end{align*} \]

\[\rightarrow g = 0, \quad \omega = -3 \]
Examples of graphs

\[g = 1 - \frac{(V - L + F)}{2}, \quad \omega = 2 - \frac{E}{2} - 4g - 2(EF - 1) \]

\[\begin{align*}
V &= 3 \\
L &= 3 \\
F &= 2 \\
E &= 6 \\
EF &= 2
\end{align*} \Rightarrow g = 0, \quad \omega = -3 \]
Examples of graphs

\[g = 1 - (V - L + F)/2, \quad \omega = 2 - E/2 - 4g - 2(EF - 1) \]

\[\begin{align*}
V &= 3 \\
L &= 3 \\
F &= 2 \\
E &= 6 \\
EF &= 2
\end{align*} \]
\[\Rightarrow g = 0, \quad \omega = -3 \]

\[\begin{align*}
V &= 2 \\
L &= 3 \\
F &= 1 \\
E &= 2 \\
EF &= 1
\end{align*} \]
Examples of graphs

\[g = 1 - (V - L + F)/2, \quad \omega = 2 - E/2 - 4g - 2(\text{EF} - 1) \]

\[\begin{align*}
V &= 3 \\
L &= 3 \\
F &= 2 \\
E &= 6 \\
\text{EF} &= 2
\end{align*} \quad \rightarrow \quad g = 0, \quad \omega = -3 \]

\[\begin{align*}
V &= 2 \\
L &= 3 \\
F &= 1 \\
E &= 2 \\
\text{EF} &= 1
\end{align*} \quad \rightarrow \quad g = 1, \quad \omega = -3 \]
Noncommutative Renormalization

Renormalization again follows from the combination of two arguments. Power counting tells us that only planar graphs with two and four external legs arriving on a single external face must be renormalized. The Moyality priniciple tells us that when the gap grows between internal and external lines in the sense of the new renormalization group slicing, these terms look like Moyal products. The corresponding counterterms are therefore of the form of the initial Lagrangian!
Noncommutative Renormalization

Renormalization again follows from the combination of two arguments.
Noncommutative Renormalization

Renormalization again follows from the combination of two arguments.

Power counting tells us that only planar graphs with two and four external legs arriving on a single external face must be renormalized.
Noncommutative Renormalization

Renormalization again follows from the combination of two arguments.

Power counting tells us that only planar graphs with two and four external legs arriving on a single external face must be renormalized.

The Moyal principle tells us that when the gap grows between internal and external lines in the sense of the new renormalization group slicing, these terms look like Moyal products. The corresponding counterterms are therefore of the form of the initial Lagrangian!
Translation invariance

Some critics were addressed to the Grosse-Wulkenhaar model:

▶ The harmonic potential is just an infrared cutoff. No wonder that it cures the mixing!
▶ There is a preferred origin in this model which cannot therefore be related to true physics which is translation-invariant.

These critics are not fully justified:

▶ The harmonic potential is not a simple infrared cutoff among others, it is the one which makes the theory just renormalizable.
▶ The initial GW model indeed breaks translation invariance. However there may be scenarios to connect it to translation invariant models at lower energy.
▶ There exists other classes of models, which we now call covariant, whose propagator is similar to the one of GW, can be analyzed by the same methods and is indeed invariant under magnetic translations. Physical quantities (which are gauge-invariant) are then translation-invariant.
Translation invariance

Some critics were addressed to the Grosse-Wulkenhaar model:
Translation invariance

Some critics were addressed to the Grosse-Wulkenhaar model:

- The harmonic potential is just an infrared cutoff. No wonder that it cures the mixing!
Translation invariance

Some critics were addressed to the Grosse-Wulkenhaar model:

- The harmonic potential is just an infrared cutoff. No wonder that it cures the mixing!
- There is a preferred origin in this model which cannot therefore be related to true physics which is translation-invariant.
Translation invariance

Some critics were addressed to the Grosse-Wulkenhaar model:

- The harmonic potential is just an infrared cutoff. No wonder that it cures the mixing!
- There is a preferred origin in this model which cannot therefore be related to true physics which is translation-invariant.

These critics are not fully justified:
Translation invariance

Some critics were addressed to the Grosse-Wulkenhaar model:

- The harmonic potential is just an infrared cutoff. No wonder that it cures the mixing!
- There is a preferred origin in this model which cannot therefore be related to true physics which is translation-invariant.

These critics are not fully justified:

- The harmonic potential is not a simple infrared cutoff among others, it is the one which makes the theory just renormalizable.
Translation invariance

Some critics were addressed to the Grosse-Wulkenhaar model:

- The harmonic potential is just an infrared cutoff. No wonder that it cures the mixing!
- There is a preferred origin in this model which cannot therefore be related to true physics which is translation-invariant.

These critics are not fully justified:

- The harmonic potential is not a simple infrared cutoff among others, it is the one which makes the theory just renormalizable.
- The initial GW model indeed breaks translation invariance. However there may be scenarios to connect it to translation invariant models at lower energy.
Translation invariance

Some critics were addressed to the Grosse-Wulkenhaar model:

- The harmonic potential is just an infrared cutoff. No wonder that it cures the mixing!

- There is a preferred origin in this model which cannot therefore be related to true physics which is translation-invariant.

These critics are not fully justified:

- The harmonic potential is not a simple infrared cutoff among others, it is the one which makes the theory just renormalizable.

- The initial GW model indeed breaks translation invariance. However there may be scenarios to connect it to translation invariant models at lower energy.

- There exists other classes of models, which we now call covariant, whose propagator is similar to the one of GW, can be analyzed by the same methods and is indeed invariant under magnetic translations. Physical quantities (which are gauge-invariant) are then translation-invariant.
Covariant Models
Covariant Models

Their kernel is a slight generalization of the Mehler kernel. Defining $\tilde{\Omega} = \frac{2\Omega}{\theta}$:
Covariant Models

Their kernel is a slight generalization of the Mehler kernel. Defining \(\tilde{\Omega} = \frac{2\Omega}{\theta} \):

\[
H^{-1} = (p^2 + \Omega^2 \tilde{x}^2 - 2iB (x^0 p_1 - x^1 p_0))^{-1},
\]
Covariant Models

Their kernel is a slight generalization of the Mehler kernel. Defining $\tilde{\Omega} = \frac{2\Omega}{\theta}$:

$$H^{-1} = \left(p^2 + \Omega^2 \tilde{x}^2 - 2\mathbb{i}B \left(x^0 p_1 - x^1 p_0 \right) \right)^{-1},$$

$$H^{-1}(x, y) = \frac{\tilde{\Omega}}{8\pi} \int_0^\infty \frac{d\alpha}{\sinh(2\tilde{\Omega}\alpha)} \exp \left(-\frac{\tilde{\Omega}}{2} \frac{\cosh(2B\alpha)}{\sinh(2\tilde{\Omega}\alpha)} (x - y)^2 \right.$$

$$-\frac{\tilde{\Omega}}{2} \frac{\cosh(2\tilde{\Omega}\alpha) - \cosh(2B\alpha)}{\sinh(2\tilde{\Omega}\alpha)} (x^2 + y^2) + 2\mathbb{i} \tilde{\Omega} \frac{\sinh(2B\alpha)}{\sinh(2\tilde{\Omega}\alpha)} x \wedge y \right).$$
Their kernel is a slight generalization of the Mehler kernel. Defining $\tilde{\Omega} = \frac{2\Omega}{\theta}$:

$$H^{-1} = (p^2 + \Omega^2 \tilde{x}^2 - 2iB (x^0 p_1 - x^1 p_0))^{-1},$$

$$H^{-1}(x, y) = \frac{\tilde{\Omega}}{8\pi} \int_{0}^{\infty} \frac{d\alpha}{\sinh(2\tilde{\Omega}\alpha)} \exp \left(-\frac{\tilde{\Omega}}{2} \frac{\cosh(2B\alpha)}{\sinh(2\tilde{\Omega}\alpha)} (x - y)^2
ight.$$

$$- \frac{\tilde{\Omega}}{2} \frac{\cosh(2\tilde{\Omega}\alpha) - \cosh(2B\alpha)}{\sinh(2\tilde{\Omega}\alpha)} (x^2 + y^2) + 2i\tilde{\Omega} \frac{\sinh(2B\alpha)}{\sinh(2\tilde{\Omega}\alpha)} x \wedge y \bigg)$$

The covariant Laplacian in a fixed external field corresponds to the case $B = \tilde{\Omega}$.
Covariant Models

Their kernel is a slight generalization of the Mehler kernel. Defining $\tilde{\Omega} = \frac{2\Omega}{\theta}$:

$$H^{-1} = (p^2 + \Omega^2 \tilde{x}^2 - 2\imath B (x^0 p_1 - x^1 p_0))^{-1},$$

$$H^{-1}(x, y) = \frac{\tilde{\Omega}}{8\pi} \int_0^\infty \frac{d\alpha}{\sinh(2\tilde{\Omega}\alpha)} \exp \left(-\frac{\tilde{\Omega}}{2} \frac{\cosh(2B\alpha)}{\sinh(2\tilde{\Omega}\alpha)} (x - y)^2 - \frac{\tilde{\Omega}}{2} \frac{\cosh(2\tilde{\Omega}\alpha) - \cosh(2B\alpha) \sinh(2\tilde{\Omega}\alpha)}{\sinh(2\tilde{\Omega}\alpha)} (x^2 + y^2) + 2\imath \tilde{\Omega} \frac{\sinh(2B\alpha)}{\sinh(2\tilde{\Omega}\alpha)} x \wedge y \right)$$
Covariant Models

Their kernel is a slight generalization of the Mehler kernel. Defining $\tilde{\Omega} = \frac{2\Omega}{\theta}$:

$$H^{-1} = \left(p^2 + \Omega^2 \tilde{x}^2 - 2iB (x^0 p_1 - x^1 p_0) \right)^{-1},$$

$$H^{-1}(x, y) = \frac{\tilde{\Omega}}{8\pi} \int_0^\infty \frac{d\alpha}{\sinh(2\tilde{\Omega}\alpha)} \exp \left(-\frac{\tilde{\Omega} \cosh(2B\alpha)}{2} \frac{\sinh(2\tilde{\Omega}\alpha)}{\sinh(2\tilde{\Omega}\alpha)} (x - y)^2
ight)$$

$$- \frac{\tilde{\Omega} \cosh(2\tilde{\Omega}\alpha) - \cosh(2B\alpha)}{2} \frac{\sinh(2B\alpha)}{\sinh(2\tilde{\Omega}\alpha)} (x^2 + y^2) + 2i\tilde{\Omega} \frac{\sinh(2B\alpha)}{\sinh(2\tilde{\Omega}\alpha)} x \wedge y \right)$$
Covariant Models

Their kernel is a slight generalization of the Mehler kernel. Defining $\tilde{\Omega} = \frac{2\Omega}{\theta}$:

$$H^{-1} = \left(p^2 + \Omega^2 \tilde{x}^2 - 2iB \left(x^0 p_1 - x^1 p_0 \right) \right)^{-1},$$

$$H^{-1}(x, y) = \frac{\tilde{\Omega}}{8\pi} \int_0^\infty \frac{d\alpha}{\sinh(2\tilde{\Omega} \alpha)} \exp \left(-\frac{\tilde{\Omega} \cosh(2B \alpha)}{2 \sinh(2\tilde{\Omega} \alpha)} (x - y)^2
- \frac{\tilde{\Omega} \cosh(2\tilde{\Omega} \alpha) - \cosh(2B \alpha)}{2 \sinh(2\tilde{\Omega} \alpha)} (x^2 + y^2) + 2i\tilde{\Omega} \frac{\sinh(2B \alpha)}{\sinh(2\tilde{\Omega} \alpha)} x \wedge y \right).$$

The covariant Laplacian in a fixed external field corresponds to the case $B = \tilde{\Omega}$.
Covariant Models

Their kernel is a slight generalization of the Mehler kernel. Defining $\tilde{\Omega} = \frac{2\Omega}{\theta}$:

$$H^{-1} = \left(p^2 + \Omega^2 \tilde{x}^2 - 2iB (x^0 p_1 - x^1 p_0) \right)^{-1},$$

$$H^{-1}(x, y) = \frac{\tilde{\Omega}}{8\pi} \int_0^\infty \frac{d\alpha}{\sinh(2\tilde{\Omega}\alpha)} \exp \left(-\frac{\tilde{\Omega} \cosh(2B\alpha)}{2 \sinh(2\tilde{\Omega}\alpha)} (x - y)^2 - \frac{\tilde{\Omega} \cosh(2\tilde{\Omega}\alpha) - \cosh(2B\alpha)}{2 \sinh(2\tilde{\Omega}\alpha)} (x^2 + y^2) + 2i\tilde{\Omega} \frac{\sinh(2B\alpha)}{\sinh(2\tilde{\Omega}\alpha)} x \wedge y \right)$$

The covariant Laplacian in a fixed external field corresponds to the case $B = \tilde{\Omega}$.

The decay away from the origin is replaced by an oscillation:

$$Q^{-1} = H^{-1} = \frac{\tilde{\Omega}}{8\pi} \int_0^\infty \frac{d\alpha}{\sinh(2\tilde{\Omega}\alpha)} \exp \left(-\frac{\tilde{\Omega}}{2} \coth(2\tilde{\Omega}\alpha)(x - y)^2 + 2i\tilde{\Omega} x \wedge y \right)$$
Covariant Models

Their kernel is a slight generalization of the Mehler kernel. Defining $\tilde{\Omega} = \frac{2\Omega}{\theta}$:

$$H^{-1} = \left(p^2 + \Omega^2 \tilde{x}^2 - 2i B \left(x^0 p_1 - x^1 p_0 \right) \right)^{-1},$$

$$H^{-1}(x, y) = \frac{\tilde{\Omega}}{8\pi} \int_0^\infty \frac{d\alpha}{\sinh(2\tilde{\Omega}\alpha)} \exp \left(-\frac{\tilde{\Omega}}{2} \frac{\cosh(2B\alpha)}{\sinh(2\tilde{\Omega}\alpha)} (x - y)^2 \right.$$

$$\left. - \frac{\tilde{\Omega}}{2} \frac{\cosh(2\tilde{\Omega}\alpha) - \cosh(2B\alpha)}{\sinh(2\tilde{\Omega}\alpha)} (x^2 + y^2) + 2i \tilde{\Omega} \frac{\sinh(2B\alpha)}{\sinh(2\tilde{\Omega}\alpha)} x \wedge y \right)$$

The covariant Laplacian in a fixed external field corresponds to the case $B = \tilde{\Omega}$.

The decay away from the origin is replaced by an oscillation:

$$Q^{-1} = H^{-1} = \frac{\tilde{\Omega}}{8\pi} \int_0^\infty \frac{d\alpha}{\sinh(2\tilde{\Omega}\alpha)} \exp \left(-\frac{\tilde{\Omega}}{2} \frac{\coth(2\tilde{\Omega}\alpha)}{\coth(2\tilde{\Omega}\alpha)} (x - y)^2 + 2i \tilde{\Omega} x \wedge y \right)$$
The Gross-Neveu Model

The noncommutative Gross-Neveu model on \mathbb{R}^2 is defined by

$$L = \frac{1}{2} \overline{\psi} \left(\frac{\partial}{\partial \theta} + \Omega / \tilde{x} + m \right) \psi + \sum_{a, b} \lambda_1 \overline{\psi}^a \psi^a \bar{\psi}^b \psi^b + \lambda_2 \overline{\psi}^a \psi^b \bar{\psi}^b \psi^a + \lambda_3 \overline{\psi}^a \bar{\psi}^b \psi^b \psi^a + \lambda_4 \overline{\psi}^a \bar{\psi}^b \psi^b \psi^a$$

where $\tilde{x} = 2(\Theta - 1)x$, $\Theta = \theta \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and a, b are color or spin indices.

This covariant model, more difficult to treat, was proved renormalizable by Vignes-Tourneret in the so-called orientable case ($\lambda_3 = \lambda_4 = 0$) and physical observables are indeed translation-invariant.

There exists also similar Bosonic models, which generalize the so-called Langmann-Szabo-Zarembo model.
The Gross-Neveu Model

The noncommutative Gross-Neveu model on \mathbb{R}^2_θ is defined by

$$L = \frac{1}{2} \overline{\psi} \left(\frac{1}{p} + \frac{\Omega}{\tilde{x}} + m \right) \psi + \sum a, b \lambda_1 \overline{\psi}_a \psi_a \overline{\psi}_b \psi_b + \lambda_2 \overline{\psi}_a \psi_b \overline{\psi}_b \psi_a + \lambda_3 \overline{\psi}_a \psi_b \overline{\psi}_b \psi_a + \lambda_4 \overline{\psi}_a \psi_b \overline{\psi}_b \psi_a$$

where $\tilde{x} = 2(\Theta - 1)x$, $\Theta = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and a, b are color or spin indices.
The Gross-Neveu Model

The noncommutative Gross-Neveu model on \mathbb{R}^2_θ is defined by

$$\mathcal{L} = \frac{1}{2} \bar{\psi} (\not{p} + \Omega \hat{x} + m) \psi + \sum_{a,b} \lambda_1 \bar{\psi}_a \star \psi_a \star \bar{\psi}_b \star \psi_b$$

$$+ \lambda_2 \bar{\psi}_a \star \psi_b \star \bar{\psi}_b \star \psi_a + \lambda_3 \bar{\psi}_a \star \bar{\psi}_b \star \psi_a \star \psi_b + \lambda_4 \bar{\psi}_a \star \bar{\psi}_b \star \psi_b \star \psi_a$$
The Gross-Neveu Model

The noncommutative Gross-Neveu model on \mathbb{R}^2_θ is defined by

$$L = \frac{1}{2} \bar{\psi} \left(\frac{\partial}{\partial x} + \Omega \tilde{x} + m \right) \psi + \sum_{a,b} \lambda_1 \bar{\psi}_a \star \psi_a \star \bar{\psi}_b \star \psi_b$$

$$+ \lambda_2 \bar{\psi}_a \star \psi_b \star \bar{\psi}_b \star \psi_a + \lambda_3 \bar{\psi}_a \star \bar{\psi}_b \star \psi_a \star \psi_b + \lambda_4 \bar{\psi}_a \star \bar{\psi}_b \star \psi_b \star \psi_a$$

where $\tilde{x} = 2(\Theta^{-1}x)$, $\Theta = \theta \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and a, b are color or spin indices.
The Gross-Neveu Model

The noncommutative Gross-Neveu model on \mathbb{R}^2_θ is defined by

$$
\mathcal{L} = \frac{1}{2} \bar{\psi} \left(\slashed{D} + \Omega \tilde{x} + m \right) \psi + \sum_{a, b} \lambda_1 \bar{\psi}_a \star \psi_a \star \bar{\psi}_b \star \psi_b \\
+ \lambda_2 \bar{\psi}_a \star \psi_b \star \bar{\psi}_b \star \psi_a + \lambda_3 \bar{\psi}_a \star \bar{\psi}_b \star \psi_a \star \psi_b + \lambda_4 \bar{\psi}_a \star \bar{\psi}_b \star \psi_b \star \psi_a
$$

where $\tilde{x} = 2(\Theta^{-1}x)$, $\Theta = \theta \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and a, b are color or spin indices.

\Rightarrow This covariant model, more difficult to treat, was proved renormalizable by Vignes-Tourneret in the so-called orientable case ($\lambda_3 = \lambda_4 = 0$) and physical observables are indeed translation-invariant.
The Gross-Neveu Model

The noncommutative Gross-Neveu model on \mathbb{R}^2_θ is defined by

$$
\mathcal{L} = \frac{1}{2} \bar{\psi} (\not \! p + \Omega \not \! \tilde{x} + m) \psi + \sum_{a,b} \lambda_1 \bar{\psi}_a \ast \psi_a \ast \bar{\psi}_b \ast \psi_b \\
+ \lambda_2 \bar{\psi}_a \ast \psi_b \ast \bar{\psi}_b \ast \psi_a + \lambda_3 \bar{\psi}_a \ast \bar{\psi}_b \ast \psi_a \ast \psi_b + \lambda_4 \bar{\psi}_a \ast \bar{\psi}_b \ast \psi_b \ast \psi_a
$$

where $\tilde{x} = 2(\Theta^{-1}x)$, $\Theta = \theta \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and a, b are color or spin indices.

This covariant model, more difficult to treat, was proved renormalizable by Vignes-Tourneret in the so-called orientable case ($\lambda_3 = \lambda_4 = 0$) and physical observables are indeed translation-invariant.

There exists also similar Bosonic models, which generalize the so-called Langmann-Szabo-Zarembo model.
Victory on the Landau ghost!
Victory on the Landau ghost!

Contrary to the initial expectations (Snyders, 1947...) noncommutativity of space-time does not prevent *infinities*. ϕ^4_4 remains just renormalisable, with still infinitely many primitively divergent graphs. However there is a big improvement:
Victory on the Landau ghost!

Contrary to the initial expectations (Snyders, 1947...) noncommutativity of space-time does not prevent *infinities*. ϕ^4 remains just renormalisable, with still infinitely many primitively divergent graphs. However there is a big improvement:

> in the Moyal plane, the Landau ghost has disappeared!
Victory on the Landau ghost!

Contrary to the initial expectations (Snyders, 1947...) noncommutativity of space-time does not prevent infinities. ϕ^4_4 remains just renormalisable, with still infinitely many primitively divergent graphs. However there is a big improvement: in the Moyal plane, the Landau ghost has disappeared!
Ghost hunting

This result was obtained in three steps:

Can we get back the REAL world? Constructive Field Theory...
Ghost hunting

This result was obtained in three steps
Ghost hunting

This result was obtained in three steps

- **One loop**: H. Grosse and R. Wulkenhaar,
 The beta-function in duality-covariant noncommutative ϕ^4-theory,
Ghost hunting

This result was obtained in three steps

- **One loop**: H. Grosse and R. Wulkenhaar,
 The beta-function in duality-covariant noncommutative ϕ^4-theory,

- **Two and three loops**: M. Disertori and V. Rivasseau,
 Two and Three Loops Beta Function of Non Commutative Φ^4_4 Theory,
Ghost hunting

This result was obtained in three steps

- **One loop**: H. Grosse and R. Wulkenhaar,
 The beta-function in duality-covariant noncommutative ϕ^4-theory,

- **Two and three loops**: M. Disertori and V. Rivasseau,
 Two and Three Loops Beta Function of Non Commutative Φ^4_4 Theory,

- **Any loops**: M. Disertori, R. Gurau, J. Magnen and V. Rivasseau,
 Vanishing of Beta Function of Non Commutative Φ^4_4 to all orders,
The ghost killing gun

We must now follow two main parameters under renormalization group flow, namely λ and Ω. At first order one finds

$$d\lambda_i \sigma_i \lambda^{2i},$$

$$d\Omega_i \sigma_i \lambda_i,$$

whose solution is:

$$\lambda \Omega$$

At $\Omega = 1$ (self-dual point) the field strength renormalization compensates the coupling constant renormalization so that $\lambda \phi^4$ remains invariant.
The ghost killing gun

We must now follow two main parameters under renormalization group flow, namely λ and Ω. At first order one finds

$$d\lambda_i/d\tau \approx a(1 - \Omega_i)\lambda_i^2,$$

$$d\Omega_i/d\tau \approx b(1 - \Omega_i)\lambda_i.$$
The ghost killing gun

We must now follow two main parameters under renormalization group flow, namely λ and Ω. At first order one finds

$$\frac{d\lambda_i}{di} \approx a(1 - \Omega_i)\lambda_i^2, \quad \frac{d\Omega_i}{di} \approx b(1 - \Omega_i)\lambda_i,$$

whose solution is:
The ghost killing gun

We must now follow two main parameters under renormalization group flow, namely λ and Ω. At first order one finds

$$\frac{d\lambda_i}{di} \simeq a(1 - \Omega_i)\lambda_i^2, \quad \frac{d\Omega_i}{di} \simeq b(1 - \Omega_i)\lambda_i,$$

whose solution is:

![Graph showing the evolution of λ and Ω](image-url)
The ghost killing gun

We must now follow two main parameters under renormalization group flow, namely λ and Ω. At first order one finds

$$
\frac{d\lambda_i}{di} \simeq a(1 - \Omega_i)\lambda_i^2, \quad \frac{d\Omega_i}{di} \simeq b(1 - \Omega_i)\lambda_i^2,
$$

whose solution is:

![Graph showing the behavior of λ and Ω with i.]

At $\Omega = 1$ (selfdual point) the field strength renormalization compensates the coupling constant renormalization so that $\lambda\phi^4$ remains invariant.
The Ward identities at all loops

\[Z(\eta, \bar{\eta}) = \int d\phi d\bar{\phi} \ e^{-\left(\phi X \phi + \phi X \bar{\phi} + A \bar{\phi} \phi + \frac{\lambda}{2} \phi \bar{\phi} \phi \bar{\phi} \right) + \bar{\phi} \eta + \bar{\eta} \phi} \]

(4.6)
The Ward identities at all loops

\[Z(\eta, \bar{\eta}) = \int d\phi d\bar{\phi} \ e^{-(\phi X \phi + \bar{\phi} X \phi + A \phi \bar{\phi} + \frac{1}{2} \phi \bar{\phi} \phi \bar{\phi}) + \phi \eta + \bar{\phi} \bar{\eta}} \] \hspace{1cm} (4.6)

Let \(U = e^{i M} \). One performs the "left" change of variables:

\[\phi \rightarrow \phi^U = \phi U \quad \bar{\phi} \rightarrow \bar{\phi}^U = U \bar{\phi} \] \hspace{1cm} (4.7)

which leads to

\[\partial_\eta \partial_{\bar{\eta}} \frac{\delta \ln Z}{\delta M_{ba}} = 0 \] \hspace{1cm} (4.8)
The Ward identities at all loops

\[Z(\eta, \bar{\eta}) = \int d\phi d\bar{\phi} \ e^{-\left(\phi X \phi + \phi \bar{X} \bar{\phi} + A \phi \bar{\phi} + \frac{\lambda}{2} \phi \bar{\phi} \bar{\phi} \phi + \bar{\phi} \phi \eta + \bar{\eta} \phi \right)} \] \hspace{1cm} (4.6)

Let \(U = e^{iM} \). One performs the "left" change of variables:

\[\phi \rightarrow \phi U = \phi U \quad \bar{\phi} \rightarrow \bar{\phi} U = U \bar{\phi} \] \hspace{1cm} (4.7)

which leads to

\[\partial_\eta \partial_{\bar{\eta}} \frac{\delta \ln Z}{\delta M_{ba}} = 0 \] \hspace{1cm} (4.8)

and one obtains the Ward identities:
Dyson’s equations

- This is a classification of graphs (no combinatoric to check)!
- The second term has one ”left tadpole insertion”. It vanishes after mass renormalization.
The first term

\[G_{(1)}^4 (0, m, 0, m) = \lambda C_0 m G^2 (0, m) \left([G^2 (0, m)]^2 + G_{\text{ins}}^2 (0, 0; m) \right) \]

(4.9)
The first term

\[G^4_{(1)}(0, m, 0, m) = \lambda C_{0m} G^2(0, m) \left([G^2(0, m)]^2 + G^2_{\text{ins}}(0, 0; m) \right) \tag{4.9} \]

The Ward identity gives:

\[
G^2_{\text{ins}}(0, 0; m) = \lim_{\zeta \to 0} G^2_{\text{ins}}(\zeta, 0; m) = \lim_{\zeta \to 0} \frac{G^2(0, m) - G^2(\zeta, m)}{\zeta} \\
= -\partial_L G^2(0, m) \rightarrow \\
G^4_{(1)}(0, m, 0, m) = \lambda [G^2(0, m)]^4 \frac{C_{0m}}{G^2(0, m)} [1 - \partial_L \Sigma(0, m)] \tag{4.10} \]
The third term

$$G_{(3)}^{4, \text{bare}} = C_0 m \sum_p G_{\text{ins}}^{4, \text{bare}}(p, 0; m, 0, m)$$

is obtained by opening the face p of

$$G_{(3)}^{4} = C_0 m \sum_p G_{\text{ins}}^{4} (p, 0; m, 0, m)$$
The third term

\[G^{4, \text{bare}}_{(3)} = C_0m \sum_p G^{4, \text{bare}}_{\text{ins}}(p, 0; m, 0, m) \]

is obtained by opening the face \(p \) of \(G_{(3)}^{4, \text{bare}} = C_0m \sum_p G_{\text{ins}}^{4, \text{bare}}(p, 0; m, 0, m) \) But in the renormalized theory we must add the missing mass counterterm.

\[G^{4}_{(3)} = C_0m \sum_p G^{4}_{\text{ins}}(0, p; m, 0, m) - C_0m(CT_{\text{missing}})G^{4}(0, m, 0, m) \] (4.11)
The third term

\[G^4_{(3)} = C_0 m \sum_p G^4_{\text{bare}} (p, 0; m, 0, m) - C_0 m (CT_{\text{missing}}) G^4 (0, m, 0, m) \]

(4.11)

But one has \(CT_{\text{missing}} = \Sigma^R (0, 0) - \Sigma (0, 0) \), hence one concludes:

\[G^4_{(3)} (0, m, 0, m) = -C_0 m G^4 (0, m, 0, m) \frac{1}{G^2 (0, 0)} \frac{\partial \Sigma (0, 0)}{1 - \partial \Sigma (0, 0)} \]
Death of the ghost

One puts G_3^4 on the left side of Dyson’s equation:

$$G_4^4(1 + C_0m \frac{1}{G_2^2(0, 0) \frac{\partial \Sigma(0, 0)}{1 - \partial \Sigma(0, 0)}})$$

$$= \lambda[G_2^2(0, m)]^4 \frac{C_0m}{G_2^2(0, m)} [1 - \partial_L \Sigma(0, m)]$$ \hspace{1cm} (4.12)

and using $C_0m = 1/(m + A^{ren}); G_2^2(0, m) = 1/[m(1 - \partial \Sigma) + A^{ren}]$ one gets:

$$G_4^4(1 - \partial \Sigma + \frac{A^{ren}}{m + A^{ren}} \partial \Sigma) = \lambda[G_2^2]^4(1 - \partial \Sigma)^2(1 - \frac{m}{m + A^{ren}} \partial \Sigma)$$ \hspace{1cm} (4.13)

hence by simplifying, since red terms are equal, amputating, $\Gamma_4 = \lambda Z^2$ hence $\beta = 0!$
A beautiful mathematical toy?

The Grosse-Wulkenhaar model seems far from the ordinary world...
A beautiful mathematical toy?

The Grosse-Wulkenhaar model seems far from the ordinary world...
It is Euclidean, it has parameters θ and Ω which are unobserved at ordinary energies...
A beautiful mathematical toy?

The Grosse-Wulkenhaar model seems far from the ordinary world...
It is Euclidean, it has parameters θ and Ω which are unobserved at ordinary energies...

However its main advantage is that it is mathematically consistent. May be nature makes use of it in a certain way?
A possible scenario
A possible scenario

As a first step towards possible scenarios beyond the standard model that could make use of the GW model, we suggest that there could be a whole bunch of noncommutative worldlets each with a θ_i parameter. They would each contain a GW_i model with its own Ω_i harmonic confining potential, all glued by a commutative space:
A possible scenario

As a first step towards possible scenarios beyond the standard model that could make use of the GW model, we suggest that there could be a whole bunch of noncommutative worldlets each with a θ_i parameter. They would each contain a GW_i model with its own Ω_i harmonic confining potential, all glued by a commutative space:
A possible scenario

As a first step towards possible scenarios beyond the standard model that could make use of the GW model, we suggest that there could be a whole bunch of noncommutative worldlets each with a θ_i parameter. They would each contain a GW_i model with its own Ω_i harmonic confining potential, all glued by a commutative space:
A Lattice of wordlets?

At low energy only the ordinary world would remain visible... The zero modes of the worldlets would create an effective LOCAL interaction in the commutative world.
A Lattice of wordlets?

At low energy only the ordinary world would remain visible... The zero modes of the worldlets would create an effective LOCAL interaction in the commutative world. That theory is somewhat similar to a lattice-regularized ordinary commutative theory, but it has no ultraviolet cutoff. As energy increases, bigger and bigger parts of the worldlets would appear.
A Lattice of wordlets?

At low energy only the ordinary world would remain visible... The zero modes of the worldlets would create an effective LOCAL interaction in the commutative world. That theory is somewhat similar to a lattice-regularized ordinary commutative theory, but it has no ultraviolet cutoff. As energy increases, bigger and bigger parts of the worldlets would appear.
A Lattice of wordlets?

At low energy only the ordinary world would remain visible... The zero modes of the worldlets would create an effective LOCAL interaction in the commutative world. That theory is somewhat similar to a lattice-regularized ordinary commutative theory, but it has no ultraviolet cutoff. As energy increases, bigger and bigger parts of the worldlets would appear.

We currently try to elaborate this idea in collaboration with R. Gurau and A. Tanasa
Noncommutativity a possible alternative to supersymmetry?

One of the strongest arguments for *supersymmetry* is that it tames uv divergences. This was desired to explain the mass hierarchy problem. Also it helps the coupling constants of the $U(1)$, $SU(2)$ and $SU(3)$ gauge groups of the standard model to converge at a single scale:
Noncommutativity a possible alternative to supersymmetry?

One of the strongest arguments for supersymmetry is that it tames uv divergences. This was desired to explain the mass hierarchy problem. Also it helps the coupling constants of the $U(1)$, $SU(2)$ and $SU(3)$ gauge groups of the standard model to converge at a single scale:
Noncommutativity a possible alternative to supersymmetry?

One of the strongest arguments for supersymmetry is that it tames uv divergences. This was desired to explain the mass hierarchy problem. Also it helps the coupling constants of the $U(1)$, $SU(2)$ and $SU(3)$ gauge groups of the standard model to converge at a single scale:

![Graphs showing the behavior of coupling constants](image)

But the ghost killing mechanism is a new mechanism to tame ultraviolet divergences which is completely different from SUSY and deserves some careful study...
Constructive Field Theory

Constructive Field Theory = Resummation of Perturbative Field Theory. But is not obvious:

▶ Functional integral is good for global existence (\[\int e^{-\lambda \phi^4} d\mu(\phi) \leq 1 \]) but bad to compute connected functions

▶ Connectivity is read easily on graphs, but they are too many (about \(n! \) at order \(n \))

To my surprise, NCQFT \(\phi^\star_4 \) appears to be doable at the constructive level and to throw some new light on the constructive problems of ordinary commutative field theory
Constructive Field Theory = Resummation of Perturbative Field Theory. But is not obvious:

- Functional integral is good for global existence ($| \int e^{-\lambda \phi^4} d\mu(\phi)| \leq 1$)
Constructive Field Theory

Constructive Field Theory = Resummation of Perturbative Field Theory. But is not obvious:

- Functional integral is good for global existence ($|\int e^{-\lambda\phi^4} d\mu(\phi)| \leq 1$) but bad to compute connected functions
Constructive Field Theory

Constructive Field Theory = Resummation of Perturbative Field Theory. But is not obvious:

- Functional integral is good for global existence ($|\int e^{-\lambda\phi^4} d\mu(\phi)| \leq 1$) but bad to compute connected functions
- Connectivity is read easily on graphs, but they are too many (about $n!$ at order n)

To my surprise, NCQFT ϕ_4^4 appears to be doable at the constructive level and to throw some new light on the constructive problems of ordinary commutative field theory
Constructive Field Theory

Constructive Field Theory = Resummation of Perturbative Field Theory. But is not obvious:

- Functional integral is good for global existence ($|\int e^{-\lambda\phi^4}d\mu(\phi)| \leq 1$) but bad to compute connected functions

- Connectivity is read easily on graphs, but they are too many (about $n!$ at order n)

To my surprise, NCQFT ϕ_4^4 appears to be doable at the constructive level and to throw some new light on the constructive problems of ordinary commutative field theory
Open Problems
Open Problems

There are of course many:

- Covariant non-orientable Models
- Covariant self-dual Models
- Gauge Theories (Yang-Mills, Chern-Simons)
- Noncommutative Minkovski Space
- Condensed Matter Applications (Quantum Hall effect, polymer growth in strong magnetic field...)
- Non commutative "curved" geometries
- Constructive analysis of the GW model to be completed... Constructive dim Reg and dim Ren
- Possible link to between ordinary field theory and quantum gravity
Open Problems

There are of course many:

- Covariant non-orientable Models
Open Problems

There are of course many:

- Covariant non-orientable Models
- Covariant self-dual Models
Open Problems

There are of course many:

- Covariant non-orientable Models
- Covariant self-dual Models
- Gauge Theories (Yang-Mills, Chern-Simons)
Open Problems

There are of course many:

- Covariant non-orientable Models
- Covariant self-dual Models
- Gauge Theories (Yang-Mills, Chern-Simons)
- Noncommutative Minkovski Space
Open Problems

There are of course many:

- Covariant non-orientable Models
- Covariant self-dual Models
- Gauge Theories (Yang-Mills, Chern-Simons)
- Noncommutative Minkovski Space
- Condensed Matter Applications (Quantum Hall effect, polymer growth in strong magnetic field...)

Open Problems (Cont.)
Open Problems

There are of course many:

- Covariant non-orientable Models
- Covariant self-dual Models
- Gauge Theories (Yang-Mills, Chern-Simons)
- Noncommutative Minkovski Space
- Condensed Matter Applications (Quantum Hall effect, polymer growth in strong magnetic field...)
- Non commutative "curved" geometries
Open Problems

There are of course many:

- Covariant non-orientable Models
- Covariant self-dual Models
- Gauge Theories (Yang-Mills, Chern-Simons)
- Noncommutative Minkovski Space
- Condensed Matter Applications (Quantum Hall effect, polymer growth in strong magnetic field...)
- Non commutative ”curved” geometries
- Constructive analysis of the GW model to be completed ... Constructive dim Reg and dim Ren
Open Problems

There are of course many:

- Covariant non-orientable Models
- Covariant self-dual Models
- Gauge Theories (Yang-Mills, Chern-Simons)
- Noncommutative Minkovski Space
- Condensed Matter Applications (Quantum Hall effect, polymer growth in strong magnetic field...)
- Non commutative ”curved” geometries
- Constructive analysis of the GW model to be completed ... Constructive dim Reg and dim Ren
- Possible link to between ordinary field theory and quantum gravity
Some good news:

- There is more than compatibility between non-commutative geometry and quantum field theory.
- Quantum field theory on non-commutative space can be renormalised.
- Quantum field theory is better behaved on non-commutative space than on commutative space (no Landau ghost).
- It seems it can be fully built at the non-perturbative level.
- Renormalization group flows are modified when there is non commutativity of space-time.
Some good news:

There is more than
Some good news:

There is more than compatibility
Some good news:

There is more than *compatibility* between non-commutative geometry and quantum field theory.
Some good news:

There is more than *compatibility* between non-commutative geometry and quantum field theory.

- Quantum field theory on non-commutative space can be renormalised.
Some good news:

There is more than **compatibility** between non-commutative geometry and quantum field theory.

- Quantum field theory on non-commutative space can be renormalised.

- Quantum field theory is better behaved on non-commutative space than on commutative space (no Landau ghost).
Some good news:

There is more than compatibility between non-commutative geometry and quantum field theory.

- Quantum field theory on non-commutative space can be renormalised.
- Quantum field theory is better behaved on non-commutative space than on commutative space (no Landau ghost).
- It seems it can be fully built at the non-perturbative level.
Some good news:

There is more than compatibility between non-commutative geometry and quantum field theory.

- Quantum field theory on non-commutative space can be renormalised.
- Quantum field theory is better behaved on non-commutative space than on commutative space (no Landau ghost).
- It seems it can be fully built at the non-perturbative level.
- Renormalization group flows are modified when there is non commutativity of space-time.
Thanks
Why Renormalizable Noncommutative Quantum Field Theories, Vienne, November 25 2007

Introduction Noncommutative Field Theory Covariant theories, self-dual theories Ghost Hunting Can we get back the REAL world? Constructive Field Theory

Thanks

for your attention!