Soft-Collinear Effective Theory and B-Meson Decays

Thorsten Feldmann (TU München)

presented at

6th VIENNA CENTRAL EUROPEAN SEMINAR on Particle Physics and Quantum Field Theory, November 27 - 29, 2009
Outline:

1. Motivation
2. Formalism
3. Applications
 - SCET in Inclusive B Decays
 - SCET in Exclusive B Decays
4. Summary
Factorization in QCD: Separate short- and long-distance modes

Short-distance modes:
- Heavy massive particles (e.g. electroweak gauge bosons, top quark, Higgs)
- Quantum fluctuations with large virtualities.

⇒ Dynamics encoded in short-distance coefficients (coefficient functions).
Calculable in (RG-improved) Perturbation Theory.

Long-distance modes:
- Particles with small masses/virtualities (light quarks, gluons, photons).

⇒ Dynamics in (hadronic/partonic) matrix elements of composite operators. Requires non-perturbative methods to deal with masses/virtualities of order $\Lambda \equiv \Lambda_{\text{QCD}}$.

IR-divergences of short-distance coefficients

\uparrow

factorization scale μ

\downarrow

UV-divergences of operator matrix elements
Factorization in QCD: Separate short- and long-distance modes

Short-distance modes:
- Heavy massive particles (e.g. electroweak gauge bosons, top quark, Higgs)
- Quantum fluctuations with large virtualities.

⇒ Dynamics encoded in **short-distance coefficients (coefficient functions)**. Calculable in (RG-improved) **Perturbation Theory**.

IR-divergences of short-distance coefficients

↑

factorization scale μ

↓

UV-divergences of operator matrix elements

Long-distance modes:
- Particles with small masses/virtualities (light quarks, gluons, photons).

⇒ Dynamics in **(hadronic/partonic) matrix elements of composite operators**. Requires **non-perturbative methods** to deal with masses/virtualities of order $\Lambda \equiv \Lambda_{\text{QCD}}$.
QCD Factorization in B-decays

- We are interested in fundamental flavour parameters, CKM angles, quark masses, ... in the SM or its NP extensions.
- We have to analyze weak decays of b-quarks, but within a non-perturbative hadronic environment!

The Procedure:
- Integrate out EW gauge bosons (NP particles) at (above) the EW scale:
 - Effective Hamiltonian for
 - semi-leptonic decays (“tree”)
 - non-leptonic decays, FCNCs and meson-mixings (“penguins”, “boxes”)
- RG-running of Wilson coefficients from $\mu \sim M_W$ to $\mu \sim m_b$
- QCD factorization to separate
 - perturbative effects (i.e. virtualities scale with $m_b \gg \Lambda_{QCD}$)
 - genuine hadronic properties (i.e. universal for B-meson and its decay products)
QCD Factorization in B-decays

- We are interested in fundamental flavour parameters, CKM angles, quark masses, ... in the SM or its NP extensions.
- We have to analyze weak decays of b-quarks, but within a non-perturbative hadronic environment!

The result: Precise determination of the CKM triangle

Hadronic parameters:
- decay constants
- transition form factors
- HQET parameters
- shape functions
- light-cone distribution amplitudes
...
Nature of IR divergences:

- for instance, $b \rightarrow X_s \gamma$ (X_s : s-quark jet)
 - Large recoil energy: $E_X \sim m_b/2$
 - Invariant mass of “hard-collinear” jet: $p_X^2 \sim \Lambda m_b$

- b-quark interactions with soft gluons described by HQET
- interactions between soft and collinear jet modes:
 - Sudakov logarithms in $b \rightarrow s$ form factor (involving $\ln^2 p_X^2/m_b^2$)
 - propagation of s-quark in soft background described by jet function
 - non-trivial dependence on (residual) b-quark light-cone momentum:
 - b-quark PDF (“shape function” for inclusive decays)
 - B-meson LCDA (“light-cone distribution amplitude” for exclusive decays)
Effective Field Theory Approach: QCD → SCET (→ HQET)

- Introduce separate field operators for each type of (relevant) IR-mode:
 - **collinear fields** (light quarks and gluons/photons) for each jet direction.
 - **soft fields** (light quarks and gluons/photons)
 - **quasi-static heavy-quark fields** (with soft residual momentum)

- Construct interaction terms, performing multipole-expansion of soft-collinear vertices → SCET Feynman rules.

- **Perturbative matching** to QCD at hard scale $\mu_h \sim m_b$:
 - short-distance coefficient functions (still depend on jet-energy)

- **RG running** in SCET resums large logs between hard and jet scale (incl. Sudakov logarithms)

- matching onto HQET at jet scale yields non-local operators
 - \rightarrow **b-quark PDF** (for inclusive B decays)
 - \rightarrow **B-meson LCDA** (for exclusive B decays)

Th. Feldmann (TUM)
Formalism: (see also Andre Hoang’s talk …)

Light-cone kinematics

- Specify collinear momentum direction by light-like vectors n_+^{μ} and n_-^{μ}, (e.g. in rest frame or c.m.s.: $n_+^{\mu} = (1, 0, 0, 1)$ and $n_-^{\mu} = (1, 0, 0, -1)$)
- Decomposition of any Lorentz vector:

\[
p^{\mu} = (n_+ p) \frac{n_+^{\mu}}{2} + p_\perp^{\mu} + (n_- p) \frac{n_-^{\mu}}{2}
\]

- collinear particles: $(n_+ p) \gg p_\perp \gg (n_- p)$
- soft particles: $(n_+ p) \sim p_\perp \sim (n_- p)$

Physical applications require different variants of SCET

- **SCET$_I$:** (inclusive reactions (jets); intermediate step for exclusive reactions)

 (hard-)collinear particles: $p_\perp^2 \sim (n_- p)(n_+ p) \sim \Lambda (n_+ p)$

- **SCET$_II$:** (exclusive reactions)

 collinear particles: $p_\perp^2 \sim (n_- p)(n_+ p) \sim \Lambda^2$
Large and small collinear spinor components

- different derivative terms for (massless) collinear quarks scale as

\[
L_{\text{coll.}}^q = \bar{q} \left[\left(in+D \right) \frac{\eta_-}{2} + iD_{\perp} + \left(in-D \right) \frac{\eta_+}{2} \right] q
\]

\[
\uparrow \quad \uparrow \quad \uparrow
\]

\[O(n+p) \gg O(p_{\perp}) \gg O(n-p)\]

- → large and small spinor components

\[
\xi(x) = \frac{\eta_- + \eta_+}{4} q(x), \quad \eta(x) = \frac{\eta_+ - \eta_-}{4} q(x)
\]

- solve e.o.m. for small spinor component \(\eta(x)\)

\[
\Rightarrow L^\xi = \bar{\xi} \left[\left(in-D \right) + iD_{\perp} \frac{1}{\left(in+D \right)} iD_{\perp} \right] \frac{\eta_+}{2} \xi
\]

(still exact for interactions with collinear gluons)
Multipole Expansion (SCET_I)

- For some directions, soft fields have larger wavelengths than collinear ones:

 \[
 \text{soft:} \quad (n^-x, x_\perp, n^+ x) \sim \left(\Lambda^{-1}, \Lambda^{-1}, \Lambda^{-1} \right)

 \text{collinear:} \quad (n^-x, x_\perp, n^+ x) \sim \left((n+p)^{-1}, (n+p \Lambda)^{-1/2}, \Lambda^{-1} \right)
 \]

⇒ At soft-collinear vertices, expand all soft fields around \(x_-^\mu = (n^+ x)^{\frac{n^\mu}{2}} \).

Field Redefinitions

- Leading interactions with soft gluons via

 \[
 i(n^- D) \rightarrow i(n^- \partial) + g(n^- A_c)(x) + g(n^- A_s)(x)
 \]

- Perform field redefinitions for collinear quarks and gluons,

 \[
 \xi_c(x) \rightarrow Y_s(x_-) \xi_c(x), \quad A_c(x) \rightarrow Y_s(x_-) A_c(x) Y_s^\dagger(x_-)
 \]

 with soft Wilson line

 \[
 Y_s(x_-) = P e^{-ig \int_0^\infty dt n_- A_s(x_- + tn_-)} \quad \text{,} \quad (i n_- \partial + g n_- A_s) Y_s = 0.
 \]

⇒ Soft gluons decouple from collinear fields to first approximation.
Matching of external heavy-to-light currents in SCET\textsubscript{I}

Expansion in 1/m_b yields:

$$\bar{\psi}(x) \Gamma Q(x) \rightarrow C_\Gamma(\mu) (\bar{\xi} W_c)(x) \Gamma (Y_s^+ h_v)(x^-) + \ldots$$

- Collinear Wilson line W_c with $(i n_+ \partial + n_+ A_c) W_c = 0$, from resummation of (unsuppressed) collinear gluon radiation from heavy quark.
- Wilson coefficient C_Γ absorbs short-distance corrections from virtual hard gluons.
- Soft and collinear divergences \rightarrow Sudakov logarithms:

$$C_\Gamma(\mu) = 1 - \frac{\alpha_s C_F}{4\pi} \left(2 \ln^2 \left(\frac{n_+ p}{\mu} \right) + \ldots \right) + \ldots$$

(sub-leading currents in the power-expansion can be identified in a similar manner)
Current renormalization in SCET

- Resum logarithms between hard scale \((n+p)\) and jet scale \(\mu \sim |\vec{p}_\perp| \sim \sqrt{\Lambda m_b}\)
 using renormalization group in SCET\(_1\)

\[
\frac{dC(\mu)}{d \ln \mu} = \left(\Gamma_{\text{cusp}}(\alpha_s) \ln \frac{(n+p)}{\mu} + \gamma(\alpha_s) \right) C(\mu)
\]

with (universal) “cusp anomalous dimension”

\[
\Gamma_{\text{cusp}} = 4 \frac{\alpha_s C_F}{4\pi} + \ldots
\]
Jet Function in inclusive reactions

\[J(p^2, \mu) \propto \frac{1}{\pi} \text{Im} \left\{ i \int d^4x \ e^{-ipx} \langle 0 \left| T \left(W_c^\dagger \xi_c \right)(0) \left(\bar{\xi}_c W_c \right)(x) \right| 0 \rangle \right\} \]

- factorize soft and (hard-)collinear corrections to propagation of energetic quark
 (e.g. in hadronic tensor for \(b \to s\gamma \))

- one-loop result in terms of modified plus distributions:

\[
J(p^2, \mu) = \delta(p^2) + \frac{\alpha_s C_F}{4\pi} \left\{ (7 - \pi^2) \delta(p^2) - 3 \left(\frac{1}{p^2} \right)_\ast + 4 \left(\frac{\ln(p^2/\mu^2)}{p^2} \right)_\ast \right\}
\]

- two-loop result and solution of RG-equation also known [Becher/Neubert 06]
Applications
1.) $B \rightarrow X_u \ell \nu \rightarrow$ determination of $|V_{ub}|$

Factorization Theorem (leading power)

$p_X^- = E_X - |\vec{p}_X|$ spectrum in $B \rightarrow X_u \ell \nu$:

\[
\frac{d\Gamma_u}{dp_X^-} \propto \int_0^1 dy \, y^{1-2a} \, H_u(y; \mu_h) \, U(\mu_h, \mu_i) \int_0^{p_X^-} d\hat{\omega} \, J\left(ym_b(p_X^- - \hat{\omega}); \mu_i\right) \hat{S}(\hat{\omega}; \mu_i)
\]

- Hard function (QCD)
- Jet function (SCET)
- Shape fct.

- Cut $p_X^- \leq \Delta < M_D^2/M_B \simeq 0.66$ GeV, in order to suppress charm background
- RG-evolution functions $U(\mu_h, \mu_i)$ and $a = a(\mu_h, \mu_i)$

- Similar factorization theorem for $B \rightarrow X_s \gamma$ at large photon energy
- Factorization at higher orders complicated by resolved photon effects

[Paz/Lee/Neubert 09]
Issues:

Perturbative calculation of hard function(s)
- **NLO**: [Bosch/Lange/Neubert/Paz 04; Bauer/Manohar 03; Bauer/Fleming/Pirjol/Stewart 00]
- **NNLO**: [Asatrian et al. 08; Beneke et al. 08; Bell 08]

Perturbative calculation of jet function
- (massless) **NNLO**: [Becher/Neubert 05/06]
- (massive) **NLO**: [Boos/TF/Mannel/Pecjak 05; Fleming/Hoang/Mantry/Stewart 07]

Shape-function evolution
- **2-loop**: [Becher/Neubert 05]

Extracting the shape function from $B \rightarrow X_s \gamma$:
- shape-function independent relations
 - [Lange/Neubert/Paz, Lange 05; Hoang/Ligeti/Luke 05; Leibovich/Low/Rothstein 00]
 - model parametrizations and theoretical uncertainties [see below →]

Sub-leading shape-function effects
- classification
 - [Lee/Stewart 04; Bosch/Neubert/Paz 04; Beneke et al. 04; Tackmann 05]
 - shape-function independent relations (tree-level)
 - [K. Lee 08]
Issues:

- Perturbative calculation of hard function(s)
 - NLO: [Bosch/Lange/Neubert/Paz 04; Bauer/Manohar 03; Bauer/Fleming/Pirjol/Stewart 00]
 - NNLO: [Asatrian et al. 08; Beneke et al. 08; Bell 08]

- Perturbative calculation of jet function
 - (massless) NNLO: [Becher/Neubert 05/06]
 - (massive) NLO: [Boos/TF/Mannel/Pecjak 05; Fleming/Hoang/Mantry/Stewart 07]

- Shape-function evolution
 - 2-loop: [Becher/Neubert 05]

- Extracting the shape function from $B \to X_s \gamma$:
 - shape-function independent relations
 [Lange/Neubert/Paz, Lange 05; Hoang/Ligeti/Luke 05; Leibovich/Low/Rothstein 00]
 - model parametrizations and theoretical uncertainties [see below →]

- Sub-leading shape-function effects
 - classification
 [Lee/Stewart 04; Bosch/Neubert/Paz 04; Beneke et al. 04; Tackmann 05]
 - shape-function independent relations (tree-level)
 [K. Lee 08]
The B-meson shape function ($= b$-quark pdf in HQET)

Definition and Properties

\[\hat{S}(\hat{\omega} = \bar{\Lambda} - \omega) = \langle B| h_\nu \delta(\omega - n_- \cdot D) h_\nu|B \rangle, \quad (n_- \cdot v = 1, \bar{\Lambda} = M_B - m_b) \]

- support $0 \leq \hat{\omega} < \infty$
- depends on renormalization scheme for b-quark mass
- radiative tail at large $\hat{\omega} \Rightarrow$ positive moments diverge

Phenomenological constraints

- Moments of $B \rightarrow X_c \ell \nu$ spectra (HQET parameters $\bar{\Lambda}$, $\mu_\pi^2 \rightarrow$ SF scheme)
- Photon spectrum in $B \rightarrow X_s \gamma$ (through factorization formula)
The B-meson shape function

$= b$-quark pdf in HQET

Approach 1:

- Parametrization at **low input scales**, e.g.

\[
S(\omega, \mu_0) = \frac{N}{\Lambda} \left(\frac{\hat{\omega}}{\Lambda} \right)^{b-1} \exp \left(-b \frac{\hat{\omega}}{\Lambda} \right) + \frac{\alpha_s(\mu_0)}{\pi} \times [\text{radiative tail}]
\]

- adjust to HQET parameters $\bar{\Lambda}$, μ^2_{π}
- RG evolution to intermediate scale μ_i
- compare with $B \rightarrow X_s \gamma$ spectrum
- predict $B \rightarrow X_u \ell \nu$ spectrum

![Graph showing $S(\omega, \mu)$ with different input scales $\mu_0 = 1$ GeV and $\mu_i = 1.5$ GeV]
The B-meson shape function (= b-quark pdf in HQET)

Approach 2:

- Calculate partonic matrix element: $\hat{S}_{\text{part.}}(\hat{\omega}, \mu_0) = \delta(\hat{\omega}) + \frac{\alpha_s(\mu_0)}{\pi} [\ldots]$
- Generate model shape function via convolution

\[
\hat{S}(\hat{\omega}, \mu_0) := \int dk \hat{S}_{\text{part.}}(\hat{\omega} - k, \mu_0) \hat{F}(k)
\]

- $\hat{F}(k)$ normalized to HQET parameters
- can be expanded in terms of suitable basis functions
- systematic studies of theoretical uncertainties in global fits [\ldots to be done]
Values of $|V_{ub}|$ determined at NLO and NNLO. In the columns labeled $|V_{ub}|$ the first error is experimental, the second is the sum of all theoretical and parametric errors except for that from m_b^*, and the third is that from m_b^*.

| Method | $\Delta B^{\text{exp}} \times 10^{-4}$ | $|V_{ub}| \times 10^{-3}$ NLO | $|V_{ub}| \times 10^{-3}$ NNLO |
|---------------------|--|--------------------------------|--------------------------------|
| $E_l > 2.1 \text{ GeV}$ CLEO | 3.3 ± 0.2 ± 0.7 | 3.56 ± 0.40^{+0.48}_{-0.27}^{+0.31}_{-0.26} | 3.81 ± 0.43^{+0.33}_{-0.21}^{+0.31}_{-0.26} |
| $E_l > 2.0 \text{ GeV}$ BABAR | 5.7 ± 0.4 ± 0.5 | 3.97 ± 0.22^{+0.37}_{-0.23}^{+0.26}_{-0.25} | 4.30 ± 0.24^{+0.26}_{-0.20}^{+0.28}_{-0.27} |
| $E_l > 1.9 \text{ GeV}$ BELLE | 8.5 ± 0.4 ± 1.5 | 4.27 ± 0.39^{+0.32}_{-0.19}^{+0.25}_{-0.22} | 4.65 ± 0.43^{+0.27}_{-0.18}^{+0.27}_{-0.24} |
| $M_X < 1.7 \text{ GeV}$ BELLE | 12.3 ± 1.1 ± 1.2 | 3.55 ± 0.24^{+0.22}_{-0.13}^{+0.21}_{-0.19} | 3.87 ± 0.26^{+0.21}_{-0.13}^{+0.21}_{-0.19} |
| $M_X < 1.55 \text{ GeV}$ BABAR | 11.7 ± 0.9 ± 0.7 | 3.67 ± 0.18^{+0.29}_{-0.17}^{+0.26}_{-0.24} | 3.96 ± 0.19^{+0.20}_{-0.13}^{+0.26}_{-0.24} |
| $P_+ < 0.66 \text{ GeV}$ BELLE | 11.0 ± 1.0 ± 1.6 | 3.56 ± 0.31^{+0.30}_{-0.17}^{+0.27}_{-0.24} | 3.84 ± 0.33^{+0.21}_{-0.13}^{+0.26}_{-0.22} |
| $P_+ < 0.66 \text{ GeV}$ BABAR | 9.4 ± 1.0 ± 0.8 | 3.30 ± 0.23^{+0.27}_{-0.16}^{+0.25}_{-0.22} | 3.55 ± 0.24^{+0.19}_{-0.13}^{+0.24}_{-0.21} |

NNLO effects important ($\sim 10\%$ shift in $|V_{ub}|$)
2.) SCET in Exclusive B Decays

Factorization Theorems for Decay Amplitudes

\[A_i(B \to \gamma + \text{lept.}) = \xi_M(\mu) \cdot T_i^I(\mu) + T_i^{II}(\mu) \otimes \phi_B(\mu) \]

\[A_i(B \to M + \text{lept.}) = \xi_M(\mu) \cdot T_i^I(\mu) + T_i^{II}(\mu) \otimes \phi_B(\mu) \otimes \phi_M(\mu) \]

\[A_i(B \to MM') = \xi_M(\mu) \cdot T_i^I(\mu) \otimes \phi_{M'}(\mu) + T_i^{II}(\mu) \otimes \phi_B(\mu) \otimes \phi_M(\mu) \otimes \phi_{M'}(\mu) \]

- universal transition form factor ξ_M (non-perturbative input)
- two-particle LCDAs for B-meson and light hadrons M (non-perturbative input)
- perturbative coefficient functions: T_i^I ("non-factorizable")
 \[T_i^{II} = H_i \otimes J \] ("factorizable" in SCET$_I \to$ SCET$_{II}$)

Λ/m_b Power-corrections lead to more factorizable and non-factorizable terms!
Recent Perturbative Results

- **NNLO vertex corrections in non-leptonic B decays (T^I_1):**
 - imaginary part
 - real part

 [Bell 07]
 [Bell 09; Beneke/Huber/Li 09]

- **NLO Spectator scattering in non-leptonic B decays (T^II_1):**
 - tree amplitudes
 - leading penguin amplitudes

 [Beneke/Jäger 05; Kivel 06; Pilipp 07]
 [Beneke/Jäger 06]

- **$O(\alpha_s^2)$ corrections in $B \to V\gamma$ decays:**
 - Contributions from O^γ_7 and O^g_8

 [Ali/Greub/Pecjak 07]
Collinear modes in exclusive final state have the same virtualities (i.e. same transverse momenta) as soft spectators in B-meson.

Dimensional regularization not sufficient to render integration over individual soft and collinear momentum regions IR-finite.

\Rightarrow Soft and collinear dynamics entangled in a non-factorizable manner.

Still, in the endpoint region certain symmetry relations hold, similar to those known from the Isgur-Wise function in HQET.

\Rightarrow Universal non-factorizable matrix elements in SCET$_1$, e.g.

$$
\langle \pi(p) | (\bar{\xi}_{hc} W_{hc}) \Gamma (Y_s h_\nu) | B(v) \rangle \propto \xi_\pi(n+p, \mu) \text{ tr} \left[\frac{n+\hat{n}}{4} \Gamma \frac{1+\psi}{2} \right]
$$

Corrections to symmetry relations are factorizable (!) (or power-suppressed)

(similar statement for corrections to “naive” factorization in non-leptonic B decays)
A toy integral:

- Consider (UV-finite) integral in \(D = 4 - 2\epsilon \) dimensions

\[
I = \int [\tilde{dk}] \frac{1}{[(k - l)^2][k^2 - m^2][(p - k)^2 - m^2]},
\]

with \(l^2 = m^2 \), \(p^2 = 0 \), and large momentum transfer \(p \cdot l \gg m^2 \)

- Integral decomposes into 3 momentum regions:

 - hard-collinear:

\[
I_{hc} = \int [\tilde{dk}] \frac{1}{[k^2 - (n_+ k)(n_- l)][k^2 - (n_- k)(n_+ p)]}
\]

\[
= -\frac{1}{(n_+ p)(n_- l)} \left\{ \frac{1}{\epsilon^2} + \frac{1}{\epsilon} \ln \frac{\mu^2}{(n_+ p)(n_- l)} + \frac{1}{2} \ln^2 \frac{\mu^2}{(n_+ p)(n_- l)} - \frac{\pi^2}{12} \right\},
\]

well-defined in dim-reg – can be reproduced by SCET\(_1\) Feynman rules.
A toy integral:

- Consider (UV-finite) integral in $D = 4 - 2\epsilon$ dimensions

\[I = \int [\tilde{d}k] \frac{1}{[(k - l)^2][k^2 - m^2][(p - k)^2 - m^2]} , \]

with $l^2 = m^2$, $p^2 = 0$, and large momentum transfer $p \cdot l \gg m^2$

- Integral decomposes into 3 momentum regions:
 - **collinear:**

\[I_c = \int [\tilde{d}k] \frac{[-\nu^2]^\delta}{[-(n_+ k)(n_- l)]^{1+\delta} [k^2 - m^2][k^2 - m^2 - (n_- k)(n_+ p)]} \]

\[= -\frac{1}{(n_+ p)(n_- l)} \left(-\frac{1}{\delta} + \ln \frac{(n_+ p)(n_- l)}{\nu^2} \right) \left(\frac{1}{\epsilon} + \ln \frac{\mu^2}{m^2} \right) , \]

not defined in dim-reg – requires additional IR regulator (here analytic reg.)
A toy integral:

Consider (UV-finite) integral in $D = 4 - 2\epsilon$ dimensions

$$I = \int [dk] \frac{1}{[(k-l)^2][k^2 - m^2][(p-k)^2 - m^2]} ,$$

with $l^2 = m^2$, $p^2 = 0$, and large momentum transfer $p \cdot l \gg m^2$

Integral decomposes into 3 momentum regions:

- **soft:**

$$I_s = \int [dk] \frac{[-\nu^2]^{\delta}}{[(k-l)^2]^{1+\delta}[k^2 - m^2][- (n_- k)(n_+ p)]}$$

$$= -\frac{1}{(n_+p)(n_- l)} \left(\left[\frac{1}{\delta} - \ln \frac{m^2}{\nu^2} \right] \left[\frac{1}{\epsilon} + \ln \frac{\mu^2}{m^2} \right] - \frac{1}{\epsilon^2} - \frac{1}{\epsilon} \ln \frac{\mu^2}{m^2} - \frac{1}{2} \ln^2 \frac{\mu^2}{m^2} + \frac{5\pi^2}{12} \right) .$$

not defined in dim-reg – requires additional IR regulator (here analytic reg.)
A toy integral:

- Consider (UV-finite) integral in $D = 4 - 2\epsilon$ dimensions

$$I = \int \frac{1}{[(k - l)^2][k^2 - m^2][(p - k)^2 - m^2]} \,,$$

with $l^2 = m^2$, $p^2 = 0$, and large momentum transfer $p \cdot l \gg m^2$

- Integral decomposes into 3 momentum regions: [see Beneke/Smirnov]

- Additional IR regulator drops out in sum,

$$I = I_{hc} + (I_c + I_s) + \mathcal{O}(\frac{m^2}{p \cdot l})$$

non-perturbative / non-factorizable

Recent ideas to solve the issue by so-called “zero-bin” subtractions [Manohar/Stewart] have been shown not to work consistently in exclusive decays [Beneke/Vernazza]
Consider correlation function in SCET$_{1}$:
exclusive final state (e.g. pion) is replaced by (off-shell) interpolating current.

\[\Rightarrow \text{Factorization theorem for correlation function (soft} \otimes \text{hard-collinear)} \]

Dispersion relation between
- (unphysical) region of large (hc) space-like momenta
- physical spectral function, containing the hadronic state

\[\Rightarrow \text{Sum rule for non-factorizable form factor in SCET}_{1}: \]
\[\xi_{\pi}(q^{2}, \mu) \text{ in terms of light-cone distribution amplitudes of } B \text{ meson} \]

- correlation function at tree level:
\[\Pi_{0}(n{\cdot}p') = f_{B}m_{B} \int_{0}^{\infty} d\omega \frac{\phi_{B}^{B}(\omega)}{\omega - n{\cdot}p' - i\eta} \]

- $\phi^{B}_{-}(\omega)$: distribution amplitude for light-cone momentum of B-meson spectator.
Consider correlation function in SCET\(_1\): exclusive final state (e.g. pion) is replaced by (off-shell) interpolating current.

⇒ Factorization theorem for correlation function \((\text{soft} \otimes \text{hard-collinear})\)

- Dispersion relation between
 - (unphysical) region of large (hc) space-like momenta
 - physical spectral function, containing the hadronic state

⇒ Sum rule for non-factorizable form factor in SCET\(_1\):

\[\xi_\pi(q^2, \mu)\] in terms of light-cone distribution amplitudes of \(B\) meson

\[m_b f_\pi \xi_\pi = \frac{1}{\pi} \int_0^{\omega_s} d\omega' e^{-\omega' / \omega_M} \text{Im} \left[\Pi_0(\omega') \right]\]

[\(\omega_s, \omega_M\): intrinsic sum-rule parameters to be optimized]
Radiative corrections

- Corrections involving $\phi^B_-(\omega)$:

 ![Diagram with various Feynman diagrams involving J_π, J_0, and h_c]

 - Explicit calculation: Factorization works (on the level of correlator) ✓
 - But $O(\alpha_s)$ result for *form factor* contains (non-resummed) **large logarithms** involving sum rule parameters. (!)

- Corrections involving 3-particle LCWF:

 (only tree-level available so far [Khodjamirian/Mannel/Offen])
Predictions for non-leptonic B decays:

- Specify **hadronic input** (lattice, sum rules, ... or data).
- Guesstimate size of **power corrections**.
- Calculate corrections to naive factorization to sufficient **accuracy** (including renormalization running in SCET$_\text{II}$)
- Compare with experiment.

[here: for tree-dom. decays at NNLO, Beneke/Huber/Li 09]

<table>
<thead>
<tr>
<th></th>
<th>Theory I (lattice,SR)</th>
<th>Theory II (data)</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^- \rightarrow \pi^- \pi^0$</td>
<td>$5.43^{+0.06}{-0.06} +0.12^{+0.15}{-0.84}$</td>
<td>$5.82^{+0.07}{-0.06} +0.14^{+0.12}{-1.35}$</td>
<td>$5.59^{+0.41}_{-0.40}$</td>
</tr>
<tr>
<td>$\bar{B}_d^0 \rightarrow \pi^+ \pi^-$</td>
<td>$7.37^{+0.86}{-0.61} +0.12^{+0.22}{-0.97}$</td>
<td>$5.70^{+0.70}{-0.55} +0.16^{+0.17}{-0.97}$</td>
<td>5.16 ± 0.22</td>
</tr>
<tr>
<td>$\bar{B}_d^0 \rightarrow \pi^0 \pi^0$</td>
<td>$0.33^{+0.10}{-0.08} +0.12^{+0.17}{-0.42}$</td>
<td>$0.63^{+0.12}{-0.10} +0.14^{+0.16}{-0.42}$</td>
<td>1.55 ± 0.19</td>
</tr>
<tr>
<td>$B^- \rightarrow \pi^- \rho^0$</td>
<td>$8.68^{+0.42}{-0.41} +0.21^{+0.15}{-1.56}$</td>
<td>$9.84^{+0.41}{-0.40} +2.54^{+0.85}{-2.52}$</td>
<td>$8.3^{+1.2}_{-1.3}$</td>
</tr>
<tr>
<td>$B^- \rightarrow \pi^0 \rho^-$</td>
<td>$12.38^{+0.90}{-0.77} +0.16^{+2.18}{-1.41}$</td>
<td>$12.13^{+0.85}{-0.73} +2.23^{+1.49}{-2.17}$</td>
<td>$10.9^{+1.4}_{-1.5}$</td>
</tr>
<tr>
<td>$\bar{B}_d^0 \rightarrow \pi^+ \rho^-$</td>
<td>$17.80^{+0.62}{-0.56} +1.76^{+2.10}{-2.10}$</td>
<td>$13.76^{+0.49}{-0.44} +1.77^{+0.34}{-2.18}$</td>
<td>15.7 ± 1.8</td>
</tr>
<tr>
<td>$\bar{B}_d^0 \rightarrow \pi^+ \rho^+$</td>
<td>$10.28^{+0.39}{-0.39} +1.37^{+1.32}{-1.42}$</td>
<td>$8.14^{+0.34}{-0.33} +1.35^{+0.49}{-1.49}$</td>
<td>7.3 ± 1.2</td>
</tr>
<tr>
<td>$\bar{B}_d^0 \rightarrow \pi^0 \rho^+\pi^0$</td>
<td>$28.08^{+0.27}{-0.19} +3.82^{+3.50}{-1.20}$</td>
<td>$21.90^{+0.20}{-0.12} +3.06^{+3.55}{-3.55}$</td>
<td>23.0 ± 2.3</td>
</tr>
<tr>
<td>$B^- \rightarrow \rho^- \rho^0$</td>
<td>$0.52^{+0.04}{-0.03} +1.11^{+0.15}{-0.43}$</td>
<td>$1.49^{+0.07}{-0.07} +1.77^{+1.29}{-1.29}$</td>
<td>2.0 ± 0.5</td>
</tr>
<tr>
<td>$\bar{B}_d^0 \rightarrow \rho^+ \rho^-\rho^0\rho^0$</td>
<td>$18.42^{+0.23}{-0.21} +3.92^{+2.55}{-3.50}$</td>
<td>$19.06^{+0.24}{-0.22} +4.59^{+4.22}{-4.22}$</td>
<td>$22.8^{+1.8}_{-1.9}$</td>
</tr>
<tr>
<td>$\bar{B}_d^0 \rightarrow \rho^+ \rho^-\rho^0\rho^0$</td>
<td>$25.98^{+0.85}{-0.77} +2.93^{+3.43}{-3.43}$</td>
<td>$20.66^{+0.68}{-0.62} +2.99^{+2.75}{-3.75}$</td>
<td>$23.7^{+3.1}_{-3.2}$</td>
</tr>
<tr>
<td>$\bar{B}_d^0 \rightarrow \rho^+ \rho^-\rho^0\rho^0$</td>
<td>$0.39^{+0.03}{-0.03} +0.83^{+0.36}{-0.36}$</td>
<td>$1.05^{+0.05}{-0.04} +1.62^{+1.04}{-1.04}$</td>
<td>$0.55^{+0.22}_{-0.24}$</td>
</tr>
</tbody>
</table>

CP-averaged branching fractions in units of 10^{-6} of tree-dominated $B \rightarrow \pi \pi$, $\pi \rho$ and $\rho_L \rho_L$ decays. The first error on a quantity comes from the CKM parameters, while the second one stems from all other parameters added in quadrature. (⋆, ⋆⋆, †: additional overall uncertainty from form factors)

Th. Feldmann (TUM) SCET and B-decays Vienna, Nov 2009 24 / 31
SCET helps:

- to separate effects associated to different dynamical scales appearing in processes involving soft and energetic particles,
- to establish the corresponding factorization theorems,
- to define/identify process-independent non-perturbative input parameters/functions.
- to resum large logarithms in RG-improved perturbation theory.
Summary

SCET Applications:

- **Inclusive** B decays:
 - Factorization theorems
 - Precise determination of $|V_{ub}|$ from $B \to X_u \ell \nu$ (→ B-meson shape function)
 - Not discussed: SM Precision Tests in $B \to X_s \gamma$ [Lee/Neubert/Paz 09]
 - Not discussed: Shape-function effects in $B \to X_s \ell^+\ell^-$ [Lee/Ligeti/Stewart/Tackmann 06]

- **Exclusive** B decays:
 - Factorization theorems
 - Endpoint divergencies → non-factorizable dynamics (→ form factor, power corr.)
 - QCD corrections to non-leptonic B decays ((N)NLO, depending on hadronic input)
 - SCET sum rules for (soft) form factors

- Collider Physics (QCD + EW):
 [see A. Hoang’s talk]
Backup Slides:
Modified plus distributions

\[
\int_{\leq 0}^{M} du F(u) \left(\frac{1}{u} \right)^{[m]} = \int_{0}^{M} du \frac{F(u) - F(0)}{u} + F(0) \ln \left(\frac{M}{m} \right),
\]

\[
\int_{\leq 0}^{M} du F(u) \left(\frac{\ln(u/m)}{u} \right)^{[m]} = \int_{0}^{M} du \frac{F(u) - F(0)}{u} \ln \frac{u}{m} + \frac{F(0)}{2} \ln^2 \left(\frac{M}{m} \right).
\]

satisfying

\[- \frac{1}{\pi} \text{Im} \left[\ln \left(- \frac{u}{m} \right) \frac{1}{u} \right] = \left(\frac{1}{u} \right)^{[m]},\]

\[- \frac{1}{\pi} \text{Im} \left[\ln^2 \left(- \frac{u}{m} \right) \frac{1}{u} \right] = 2 \left(\frac{\ln(u/m)}{u} \right)^{[m]} - \frac{\pi^2}{3} \delta(u),\]
Theoretical accuracy in $B \rightarrow X_s \gamma$ (large photon energy)

Phenomenological Importance:

- Good understanding of $d\Gamma/dE_\gamma$ important for $|V_{ub}|$ extraction (see above)
- $\Gamma(B \rightarrow X_s \gamma)$ sensitive to New Physics.

Complication:

Operators in weak effective Hamiltonian for $b \rightarrow s$ transitions contribute differently to hadronization process:

- electromagnetic operator $\mathcal{O}_7(b \rightarrow s\gamma)$
- chromomagnetic operator $\mathcal{O}_8(b \rightarrow sg)$
- 4-quark operators $\mathcal{O}_{1-6}(b \rightarrow s q\bar{q})$

New effects at sub-leading order in $1/m_b$ expansion:

- Photon does not couple directly to short-distance $b \rightarrow s$ transition.
 \Rightarrow New Factorization Theorem

[Th. Feldmann (TUM)]

[SCET and B-decays]

[Vienna, Nov 2009 28 / 31]
Structure of New Factorization Formula

Features of “resolved” photon contribution:

- Involves new jet function \bar{J} in opposite direction to X_s
- New soft functions from operators that are non-local in 2 light-cone directions
- Potential mechanism to observe CP Violation in $B \rightarrow X_s\gamma$
- Leading mechanism for Isospin Violation in $B \rightarrow X_s\gamma$
- Difficult to estimate – Vacuum Insertion Approximation $\sim 5\%$
Light-Cone Distribution Amplitudes

B-mesons:

- 2-particle LCDAs defined from HQET matrix elements:
 \[
 \langle 0 | \bar{q}(z) \beta [z, 0] h_v(0) \alpha | B(v) \rangle \quad \text{(with } z^2 = 0) \]

- 2 independent Dirac structures \(\rightarrow \phi_B^+(\omega), \phi_B^-(\omega), \)
 with light-cone momentum \(\omega \) of the light quark (after Fourier transform.)

Properties:

- \(\frac{1}{\omega} \) moment of \(\phi_B^+(\omega) \) relevant for leading contribution in factorization theorem.
- 1-loop evolution equation for \(\phi_B^+(\omega, \mu) \)
 \(\text{[Lange/Neubert 03]} \)
- Phenomenological parametrizations:
 - Sum rules: \(\langle \omega^{-1} \rangle_{\mu=1 \text{ GeV}} = (2.15 \pm 0.5) / \text{GeV} \)
 \(\text{[Braun/Ivanov/Korchemsky 03]} \)
 - Moment analysis: \(\langle \omega^{-1} \rangle_{\mu=1 \text{ GeV}} = (2.09 \pm 0.24) / \text{GeV} \)
 \(\text{[Lee/Neubert 05]} \)
Non-relativistic Toy-Model for B-meson LCDAs:

- Light constituent quark mass m
 \[\Rightarrow \phi_B^{\pm}(\omega, \mu \sim m) \simeq \delta(\omega - m) \]

- Study evolution towards relativistic scales $\mu \gg m$:
 \[(\text{WW approx. for } \phi_B^{-}(\omega))\]

- Light quark mass m (assumption: $m \gg \Lambda$)

- $\phi_B^{\pm}(\omega, \mu \sim m) \simeq \delta(\omega - m)$

- Study evolution towards relativistic scales $\mu \gg m$:
 \[(\text{WW approx. for } \phi_B^{-}(\omega))\]

- $\phi_B^{\pm}(\omega) \propto \omega$ for $\omega \to 0$
- $\phi_B^{-}(\omega) \propto \text{const.}$ for $\omega \to 0$
- Radiative tail for $\phi_B^{\pm}(\omega)$: positive moments do not exist (analogous to SF)

[Bell/Feldmann 08, Talk by G. Bell at SCET’08]