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Recent reviews on chiral perturbation theory [ChPT]:

G. Ecker:
Status of chiral perturbation theory [42 pages] 2008
http://wwwthep.physik.uni-mainz.de/∼confinement8/site/

G. D’Ambrosio:
Status of Weak ChPT [42 pages] 2009
http://ific.uv.es/eft09

J. Bijnens:
Status of strong ChPT [73 pages] 2009
http://ific.uv.es/eft09

Chiral perturbation theory in the meson sector [91 pages] 2009
http://www.chiral09.unibe.ch

S. Scherer:
Baryon chiral perturbation theory [55 pages] 2009
http://www.chiral09.unibe.ch
⇒ And following talk
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These are already more than 300 pages. Many more can easily be
found on the arXiv.
Reviews are often structured as follows:

• ChPT: the Lagrangian;power counting
• evaluation of specific processes
• conclusions

At Chiral Dynamics 2009, Bijnens started with a nice historical part,
where early articles are listed:

• 50, 40, 35, 30, 25, 20 and 15 years ago
• ChPT: the Lagrangian; power counting
• . . .
• renormalization group ⇒ L. Carloni, this meeting
• heavy pion ChPT ⇒ new stuff
• conclusions
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What can I add here to these (more than) 300 pages?

I decided
• to provide a supplement:

Early (and not so early) days of ChPT

[expanding on Hans Bijnens first part]

• to discuss the present status:

What we know today

• to not consider applications in nuclear physics at all. See, e.g.,

Birse; Epelbaum. Status reports at Chiral Dynamics ’09, discussion of power
counting

• to concentrate basically on the meson sector

Baryons, nucleons: ⇒ talks H.-W. Hammer, M. Hilt, S. König, S. Scherer, A.
Vuorinen

η′
: ⇒ talk P. Masjuan
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ChPT The early days

ChPT Not so early days
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ChPT

The early days
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50 years ago

Goldberger-Treiman relation:

MNgA = FπgπN

Goldberger and Treiman, ’58

where

gA : n → peν̄e weak interactions
Fπ : π → ℓνl weak interactions

gπN : πp → πp strong interactions
MN : nucleon mass strong interactions

→ GT-relation looks very surprising
Data around 1970:

∆GT
.
= 1 − MNgA

gπNFπ
= 0.08 ± 0.02

Pagels and Zepeda, ’72
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In order to better understand the origin of this relation:
Nambu ’60
strong interactions have approximate chiral symmetry, which is
spontaneously broken

• pions have small mass in the real world, because symmetry
stays nearly exact

• GT relation is very natural in this framework

Nobel Prize 2008

Consider nucleon matrix element of Axial current

〈p′|Aa
µ(0)|p〉

gπN
gA

Aa
µ

Fπ

+
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Gell-Mann and Lévy ’60
Linear sigma models
Again, GT relation very natural

Nambu and Lurié ’62:
Application of Nambu’s proposal
Low energy theorems for pion scattering on nucleons. Could relate

πN → πN ⇔ πN → ππN

Emergence of current algebra (CA), PCAC and all that
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Weinberg ’66: ππ scattering

a0 =
7M2

π

32πF 2
π

+ O(M4
π) = 0.159 + O(M4

π)

a0: isospin zero, S-wave ππ scattering length

“Greatest defeat of S-matrix theory” Weinberg ’97

How is it done? According to LSZ:

M(ππ → ππ) ⇔ 〈π|T∂µAa
µ(x)∂νAb

ν(y)|π〉

Pull derivatives outside T-product. Derivatives do not commute:

d

dx0
TF(x)G(y) = δ(x0 − y0)[F(x),G(y)] + T

d

dx0
F(x)G(y)

Use CA to evaluate commutators, like

δ(x0)[A0
a(x),Aµ

b (0)] = iǫabcV
µ
c (x)δ4(x) + S.T.
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Use assumption
• about extrapolation of matrix element with ∂µAµ

a [”PCAC”]

• about group property of symmetry breaking term

PCAC: Approximation where matrix elements are evaluated in the
symmetry limit

Weinberg ’67:
It is much easier to use effective Lagrangians at tree level to derive
PCAC+CA results, in particular, if many pions are involved

Dashen and Weinstein ’69:

Chiral
symmetry

≡ PCAC +
current algebra

≡ effective
Lagrangians

Figure à la Pagels ’75
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Dashen and Weinstein ’69:

L2 =
1

2(1 + f−2~π2)2
∂µ~π∂µ~π

generates all ππ → ππ, ππππ, . . . amplitudes in the chiral symmetry
limit, at leading order

Develop method to perform perturbation theory with

H = H0 + ǫH1

where H0 is SU(3) × SU(3) symmetric, symmetry spontaneously
broken to diagonal subgroup, and matrix elements are expanded in
powers of ǫ, see below.

No Lagrangian used for this step!!

Constructing effective Lagrangians for any group
Coleman, Wess, Zumino; Callan, Coleman, Wess, Zumino ’69

ChPT – p. 13



On the use of effective Lagrangians

Weinstein, ’71:

“Clearly, our discussion already makes clear the fact that the
Lagrangians are only reliable when used to calculate the low energy
behaviour of meson amplitudes ...”

“...in general, there is no compelling reason to believe anything they
have to say about terms involving the next order in momenta.”
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Charap ’70, ’71
Considers non-linear sigma model in the chiral limit. Calculates
loops, but warns the reader:

“...the loop integrations are so badly divergent as to render the theory
non renormalizable, so that we cannot really believe any result of a
perturbative calculation anyway.”

“Even so, there may be something to be learned from the attempt to
calculate higher-order terms in perturbation theory ...So, fully
cognizant of the dubious significance of the calculations, we will
examine the soft-pion theorem to higher orders for ππ scattering.”

If the calculation is done correctly [Charap used a wrong measure
first], then

Mπ = 0

A(s = 0, t = 0, u = 0) = 0 [Adler zero]

also at higher loop level.
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Chiral Perturbation Theory I
Li and Pagels ’71

Perturbation Theory about a Goldstone Symmetry
(comment on Dashen/Weinstein method)

Consider

H = H0 + ǫH1

H0 : SU(2)× SU(2)→ SU(2)V
H1 : isospin symmetric
ǫ : strength of symmetry breaking

Main observation of Li and Pagels:

S-matrix elements are not analytic at ǫ = 0

Standard perturbation theory breaks down

“S-matrix elements contain ǫ log ǫ terms”

[now known as chiral logarithms]
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Proof for scalar form factor:

〈π(p′)π(p)|j(0)|0〉 = F (s) ; s = (p + p′)2

Dispersion relation:

F (s) =
1

π

∫ ∞

4M2
π

ds′

s′ − s
ImF (s′) = F (0){1 +

〈r2〉
6

s + O(s2)} (1)

with

〈r2〉 =
6

πF (0)

∫ ∞

4M2
π

ds′

s′2
ImF (s′)

Use unitarity near threshold:

ImF (s) = t0(s)F̄ (s)

√

1 − 4M2
π

s
; t0 : ππ → ππ

Insert into Eq. (1)
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Conclusions

• 〈r2〉 is logarithmically divergent as Mπ → 0

• Coefficient of logarithm is given by matrix element of symmetric
Hamiltonian H0

Questions

• Are low-energy theorems affected by these singularities?
e.g., is a0 ≃ M2

π log M2
π? [ Later: No!]

• How can one determine the non analytic terms in general?

Li and Pagels worked out correction to GT relation in this first article:

∆GT = CM2
π log

Mπ

Λ
; C known

ChPT – p. 18



Bace, Bég, Langacker, Li, Pagels, Pardee, Zepeda,. . . 1971-1975

Long series of long papers. The general method is developed and
outlined in

Langacker and Pagels: Chiral perturbation Theory
Phys. Rev. D8 (1973) 4595

Technique:

• Assume quantity Q has term ǫ log ǫ

• Then |dQ
dǫ | → ∞ as ǫ → 0

• Write field theory expression for this derivative. Write dispersion
relation in various channels

• Saturate with pion intermediate states. Single out divergent part

• Procedure is complicated: a mixture of Quantum Field Theory, of
(formal) operator commutation relations, and of dispersion
techniques. Results are (very) difficult to reproduce with this
technique. E.g. chiral logarithms in GT relation
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Application

• Logarithmic singularity in Fπ:

Fπ = F{1 − M2
π

16π2F 2
log

M2
π

Λ2
+ O(M4

π)}

Result agrees with modern ChPT. However: Scale Λ is not
worked upon, relation to scalar radius not seen in this manner
[Ward identities are not solved]

• Evaluation of corrections to various current algebra predictions

Langacker and Pagels, ’73:
“In general, we find perturbation theory around SU(2)× SU(2) to be
quite good, perturbation theory around SU(3)×SU(3) to be marginal.”
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Further developments

Lehmann, Trute ’72, ’73: Evaluate ππ → ππ at order p4 and vector
form factor of pion at order p2 in chiral limit, using L2 from page 13

Ecker and Honerkamp ’72,’73: Evaluate ππ → ππ using
superpropagators

Pagels ’75:
“Departures from Chiral Symmetry” Physics Reports ’75

Summary of methods used and of results obtained so far

Pagels comments on ππ → ππ:
“If the experimental scattering lengths turn out to be much larger than
the ones predicted by CA, we would have to rethink our ideas about
chirality.”
Is correct, sounds very modern
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A quiet period for ChPT followed - presumably due to

Gross, Politzer, Wilczek ’73:
“Asymptotic freedom” Nobel Prize 2004

Fritzsch, Gell-Mann and Leutwyler ’73:
“ Advantages Of The Color Octet Gluon Picture”

The birth of QCD
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Gasser and Zepeda ’80 (preprint ’79):
Evaluation of leading non analytic contributions (LNAC) in the quark
mass expansion of particles of any spin

• framework: QCD
• technique: Rayleigh-Schrödinger perturbation theory

E.g. for a heavy fermion F , isospin I, spin s:

M2
F = M2

F0 + σF + CI
G2

A

F 2
σ3/2

π + · · ·

where

σF =
1

2s + 1

∑

sz

〈F (p = 0)|muūu + mdd̄d|F (p = 0)〉0

and similarly for σπ. CI is a Clebsch-Gordan coefficient, GA the axial
coupling of F .
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In addition, we realized:
A one-loop calculation with the nonlinear sigma model, including a
symmetry breaking term, generates the correct LNAC in Mπ, Fπ

J.G. ’81:
• LNAC to meson and baryon octet
• electromagnetic contributions estimated
• worked out quark mass ratios at NLO
• a pion-nucleon sigma term of 60 MeV requires the nucleon mass

in the chiral limit to be 600 MeV. Would be a strange world
• there is an effective Lagrangian whose one-loop contributions

reproduce the LNAC in the quark mass expansion of the baryon
octet
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Status around ’80

Status of calculations a la Pagels et al.
• Chiral limit is approached in non a analytic manner

(“chiral logarithms”)
• In masses and decay constants, LNAC can be evaluated in a

safe manner. Strength of singularity given by Clebsch Gordan
coefficient of symmetric theory.

However

• Higher order terms in the quark mass expansion?
• Ward identities?
• Non analytic terms in general?

How ?
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ChPT

Not so early days

This is where most talks on ChPT start
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Joseph-Louis Lagrange 1736 -1813

ChPT – p. 27



“Phenomenological Lagrangians”

Weinberg ’79:

L2 =
1

2(1 + f−2~π2)2
∂µ~π∂µ~π

• tree graphs with L2 reproduce CA results for ππ → ππ, ππππ, . . .
f = fπ at mu = md = 0.

• no CA needed
• higher orders in momentum expansion: add higher derivative

terms, evaluate loops with L2 + · · ·
• effect of loops is suppressed by powers of energy (power

counting), scale is 4πFπ

• mass terms constructed at order p2, p4

• renormalization discussed (is a non renormalizable QFT)
• renormalization group used to calculate leading logarithms at

two-loop order in ππ → ππ
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Compare with photon–photon interactions in QED

Consider interaction between photons at very low energies

Massen

Massgap0 0.5 MeV

Photon Elektron

• Effective Lagrangian for photon interactions: Write all terms
allowed by symmetry (gauge, Lorentz, P, C, T)

Leff = −1

4
FµνFµν +

e1

m4
e

(FµνFµν)2 +
e2

m4
e

(FµνF̃µν)2 + · · ·

• Amounts to an expansion in powers of ∂µ/me and Fµν/m2
e

• Scale: electron mass
• Low energy constants (LECs) ei fixed through QED

Euler, Heisenberg ’36

• Leff is a non renormalizable QFT
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With properly chosen coefficients ei, the above Lagrangian
reproduces the matrix elements

nγ → mγ

in full QED, to any order in α and in momenta/me (for small momenta).

L2 =
1

2(1 + f−2~π2)2
∂µ~π∂µ~π

Is Heisenberg-Euler Lagrangian for ππ interactions. Generates exact
leading term for any number of pions: more powerful than the
Heisenberg-Euler Lagrangian.
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ChPT for ππ → ππ at any order now boils down to

• construction of the effective Lagrangian [linear algebra]
• calculation of loops [mathematics]
• determination of the low energy constants [difficult]
• comparison with data [difficult]

Weinberg: “Symmetry of the Lagrangian is symmetry of the S-matrix”
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Systematizing
JG, Leutwyler ’84

Consider QCD, with external c-number fields v, a, s, p:

eiZ(v,a,s,p) = 〈Oout|Oin〉v,a,s,p

with

L = LQCD
mq=0 + q̄γµ(vµ + aµγ5)q − q̄(s − iγ5p)q

q̄ = (ū, d̄)

L invariant under

q → 1

2
((1 + γ5)VR + (1 − γ5)VL)q

vµ
′ + aµ

′ → VR(vµ + aµ)V †
R + iVR∂µV †

R

etc

VR,L ∈ SU(2)
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Z(v′, a′, s′, p′) = Z(v, a, s, p)

contains all Ward identities associated with vector, axial vector, scalar
and pseudoscalar currents in QCD.

Effective Theory: L → Leff

with

Leff = L2 + L4 + · · ·

L2 =
F 2

4
〈DµUDµU † + χU † + χ†U〉

where

U = eiφ/F ; DµU = ∂µU − i(v + a)µU + iU(v − a)µ

χ = 2B(s + ip) ; pion fields ∈ φ

F, B low energy constants (LECs), not fixed by chiral symmetry
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Tree graphs with L2 generate leading order term of all Green
functions of vector, axial vector, scalar and pseudoscalar currents,
and satisfy all Ward identities, by construction.

Higher order Lagrangians

L4 =
10
∑

i=1

ℓiQi ; L6 =
56
∑

i=1

ciPi ; . . .

• L describes physics of pions at low energies
• LECs ℓi, ci not fixed by symmetry. Local polynomials Qi, Pi

(expressed in meson fields) are known. J.G., Leutwyler ’84; Bijnens,

Colangelo, Ecker ’99

• Calculations with Leff generate an expansion (ChPT) in powers
of quark masses and of external momenta. Effect of loops is
suppressed by powers of p (power counting). Scale: 4πF ≃ 1
GeV.

• ChPT generates relations between Green functions
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Examples

pion mass

M2
π = M2

[

1 − xℓ̄3 + O(x2)
]

; (MF )2 = −(mu + md)〈0|ūu|0〉

ππ scattering length: (isospin zero, S-wave)

a0 =
7

32π

M2
π

F 2
π

{

1 + xL + O(x2)

}

Isospin =0, S-wave

L =
40

21

(

l̄1 + 2l̄2 −
3

8
l̄3 +

21

10
l̄4 +

21

8

)

x =
M2

32π2F 2
≃ 0.007

First term in a0: Weinberg ’66

l̄i are renormalized LECs ; l̄i = log
Λ2

i

M2
π

Terms of the order x2 are also known
Bürgi ’96 [Mπ ]; Bijnens, Colangelo, Ecker, JG, Sainio ’96 [Mπ, a0]

ChPT – p. 35



Advantages/disadvantages
Pros
Calculating with this Lagrangian and properly chosen LECs, one
reproduces S-matrix elements of QCD, at low energy, in a systematic
manner

Weinberg ’79; Leutwyler ’94

Contras
• Limited energy range of validity
• Many LECs

Note, however:
• LECs are fixed by QCD
• Can be determined

• from experiment
• or using lattice calculations, see below
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More particles, more interactions

Can introduce more particles, more interactions

• K, η, η′

• baryons ⇒ Scherer
• photons
• weak interactions
• resonances
• . . .

effective Lagrangian is enlarged
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courtesy of
G. Ecker

– p. 2

3
Effective chiral Lagrangian (meson sector)

Lchiral order (# of LECs) loop order

Lp2(2) + Lodd
p4 (0) + LΔS=1

GF p2 (2) + Lemweak
G8e2p0 (1) L = 0

+ Lem
e2p0(1) + Lleptons

kin (0)

+ Lp4(10) + Lodd
p6 (23) + LΔS=1

G8p4 (22) + LΔS=1
G27p4 (28) L ≤ 1

+ Lemweak
G8e2p2 (14) + Lem

e2p2(13) + Lleptons
e2p2 (5)

+ Lp6(90) L ≤ 2

LECs ≡ low energy constants
in red: effective Lagrangian of early 80s

Status of CHPT Confinement8, Sept. ’08



Applications
We are now at the point where we can go back to the more than 2500
articles which are concerned with aspects of ChPT

• quark mass ratios
• realization of SSB
• scattering processes
• decays: leptonic, semileptonic, non leptonic
• form factors
• precision statements about scattering lengths
• resonances in ππ scattering (σ, ρ, κ-pole)
• statements about structure of matrix elements (e.g. photo

production of π0)
• applications in (g − 2)Muon

• extrapolations in lattice calculations (Mπ → Mπ|physical, V → ∞).
• . . .

Consult the reviews on page 3
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What we know today
about

1. The effective Lagrangian

2. The underlying theory

3. ChPT as used in data analysis

4. Information from lattice calculations

5. Problems in sight
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1. The effective Lagrangian

• Classification of the various terms:
mesons, baryons
(strong + weak interactions)

√

• power counting
√ ⇒talk S. Scherer

• loop calculations
√

[1,2]

• RG and its applications substantial progress [3]

⇒talk L. Carloni
• inclusion of resonances ⇒talk S. Scherer
• LECs ((

√
)) [4]

[1] For a review, see Bijnens,hep-ph/0604043

[2] Ecker and Unterdorfer, Mathematica program for one-loop graphs ’05

[3] Weinberg ’79; Colangelo ’95; Colangelo, Bijnens, Ecker ’98; Büchler, Colangelo 2003;
Bissegger, Fuhrer 2007; Kivel, Polyakov, Vladimirov 2008; Bijnens, Carloni 2009

[4] For reviews, see e.g. Ecker ’07; Necco ’08; Necco CD09 (lattice) ; Colangelo
(FLAVIAnet, Bari) ’09
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2. The underlying theory

Information from EFT and from lattice QCD

• QCD: SU(3)× SU(3) symmetry which is spontaneously broken to
SU(3) [no mathematical proof available (yet)]

• chiral limit is approached in non analytic manner
• information on quark mass ratios (EFT, lattice) and on absolute

values of quark masses (lattice)
• 〈0|ūu|0〉 is of “normal size”: Gell-Mann – Oakes-Renner picture

Gell-Mann, Oakes and Renner ’68

• positions of resonances on second Riemann sheet in ππ → ππ
from first principles: σ, ρ, κ

Caprini, Colangelo, Leutwyler 2006; Moussallam 2006

Many statements on specific processes and on specific matrix
elements, consult review talks on page 3. For example,

σ term of size ∼ 60 MeV would be very difficult to understand
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3. ChPT as used in data analysis

ChPT can be used to extract interesting parameters, like CKM matrix
elements, scattering lengths, from data. In particular, to perform
radiative corrections, ChPT is a very convenient and systematic
method [1]

[1] Cirigliano, Giannotti, Kastner, Knecht, Neufeld, Pichl, Rupertsberger,
Talavera,Urech. . .

Examples

– Kl3 decays to extract |f+(0)Vus|
– pionium decay |a0 − a2|
– cusp analysis a0, a2

– Ke4 a0, a2

−Γ(P → eν(γ))/Γ(P → µν(γ)) : physics beyond SM?

−small quark mass, large volume extrapolations in lattice
calculations

etc
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4. Information from lattice calculations

Numerical simulations have made breathtaking progress in recent
years

See e.g. report by Colangelo in Bari, Nov. ’09

The FLAG working group: status report

FLAG = FLAVIAnet lattice Averaging Group
FLAG aims to provide a summary of lattice results relevant for the
phenomenology accessible to non-experts

• light quark masses
• LECs
• decay constants
• form factors

Will be made public soon. Watch out!
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Two examples

i) Pion mass: the chiral logarithm

0 0.02 0.04 0.06 0.08

m
AWI

3.4

3.6

3.8

4.0

4.2

CP-PACS/JLQCD κ
s
=0.13640

PACS-CS κ
s
=0.13640

PACS-CS κ
s
=0.13660

ud

mπ
2
/m

AWI
ud

Figure taken from
S. Aoki et al. [PACS-CS Collaboration]
Phys. Rev. D 79 (2009) 034503
arXiv:0807.1661 [hep-lat] slope: see p. 35

ChPT – p. 44



ii) The coupling l̄3

-1 0 1 2 3 4 5 6 7 8
l
3
-bar

GL

CERN

ETM

MILC(SU3)

PACS-CS(SU2)

JLQCD

RBC/UKQCD(SU2)

RBC/UKQCD(SU3)

PACS-CS(SU2-FSE)

PACS-CS(SU3)

PACS-CS(SU3-FSE)

Figure taken from
S. Aoki et al. [PACS-CS Collaboration]
Phys. Rev. D 79 (2009) 034503
arXiv:0807.1661 [hep-lat]
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5. Problems in sight
• Consensus: ChPT works well for SU(2)× SU(2)
• Seems less so for SU(3) × SU(3). Convergence?

my attitude:
- Meson sector: wait and see a

- Baryon sector: more of a problem [which already Pagels and
Langacker were aware of]

• η → 3π decays? (rate, slope α)
• Charged pion polarizabilities?
• f+(0)?

• what did I miss?

a This was a good attitude in many cases in the life of ChPT. An example is

the Goldberger-Treiman discrepancy:

∆GT
.
= 1 − MNgA

gπNFπ
= 0.08 [1970] not understandable

= 0.01 [2009]
√

(preliminary value)
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To do, meson sector

By definition, list is incomplete; order of issues is random

• read the reviews listed on page 3

• improve knowledge of LECs at order p6 in meson sector
• update Cottingham formula for e.m. contributions⇔ md

mu

• discuss matching for αQED 6= 0 [1]

• complete matching SU(2) × SU(2) ⇔ SU(3)× SU(3) [2]

• matching SU(N-1) × SU(N-1) ⇔ SU(N)× SU(N)

• work out manageable analytic form (for some of the ) p6 terms,
e.g. f+(0) [3]

• work on hard pion ChPT [4]

• familiarize yourself with lattice calculations, read FLAG

[1] See Rusetsky for nice discussion at CD09

[2] JG, Haefeli, Ivanov, Schmid ’07, ’09

[3] Bijnens and Talavera ’03; see Kaiser ’07 for M2
π

[4] Bijnens and Celis ’09 ChPT – p. 47



SUMMARY
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Summary

• ChPT is the effective theory of the SM. It enjoys a very healthy
life

• It took a long time to reach its present perfection, both, in
technical terms, and in understanding various aspects of the
underlying theory

• It has proven to be an indispensable tool in many areas
• We wrote in 1984 that "...one will have to wait a long time before

lattice calculations achieve the accuracy we are aiming at in
ChPT"

JG, Leutwyler ’84

• It appears that we will soon arrive at this point, after 25 years

ChPT – p. 49



SPARES
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ππ scattering length

Connection with the vacuum structure [simplified picture]:

Consider isospin zero S-wave scattering length in ππ scattering, at
one loop:

a0 =
12M2

π − 5M2

32πF 2
+ O(M4) ; M2 =

mu + md

F 2
|〈0|ūu|0〉| .

Weinberg ’66

For small value of |〈0|ūu|0〉|, the scattering length becomes larger.
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