Open Access Management mit dem Forschungsinformationssystem Pure

Günther Hansen, Manager Research Intelligence

27.9.2016, ODK 2016
Elsevier Research Intelligence

SciVal
External view

Ready-to-use tools to analyze the world of research, and to establish, execute and evaluate optimized strategies for the research organization.

Pure
Internal view

Comparative research information management system to enable evidence-based decisions, promote collaboration, simplify administration and optimize impact.

Analytical Services

Custom analysis

Customized analysis, reports and services to meet your research management needs.

Scopus

Rich data assets

The largest abstract and citation database of peer-reviewed literature; the broadest source of global scientific research. Includes content from 5,000 publishers with tools to easily track, analyze and visualize research.

Mendeley

Researcher productivity

A free reference manager and academic social network that can help researchers organize and discover the latest research, collaborate with others online, and see meaningful trends in global research activity.

Informs research strategy

Supports research activity
Data types in Pure
Pure’s datamodel – types of records

**Persons** - researchers, postgraduate students, external persons

**Organizations** - faculties, departments, research groups, external units

**Publications** - Peer-reviewed journal articles, books, chapters, theses, non-textual, etc.

**Publishers and journals** - Names, IDs, ratings

**Bibliometrics** - citations, impact factors, Altmetrics

**Activities** - Conferences, boards, learned societies, peer reviewing, prizes

**Impact** - narrative recordings of the impact of research – can be peer-reviewed

**Datasets** - stored in Pure or in separate data store

**Equipment** - type, placement, ownership details

**Funding opportunities** - funder, programme, eligibility, etc.

**Grant applications** - stage, funder, programme, amount applied, documents attached

**Ethical approvals** - with all relevant documents attached

**Grants** - Funder, programme, amount, dates, contract docs, applicants, budget

**Projects** - budget, expenditure, participants, collaborators, students, outputs

**Press clippings** - national and international papers, electronic media
It allows asset discovery and reporting by publication, person, department, publisher, journal, metrics, external and internal collaborators, patents, and more.

EXAMPLE: Which publications were funded by a specific funder?

Data records in Pure are related to each other.
Open Access
Open access – Communicate effectively to all publication stakeholders
Vielen Dank
Kontakt: g.hansen@elsevier.com
Sources
and ingestion
## Sources and ingestion options per content type

<table>
<thead>
<tr>
<th>Type</th>
<th>Source</th>
<th>Ingestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persons</td>
<td>Internal HR system</td>
<td>Pure XML format (automatic recurring sync job)</td>
</tr>
<tr>
<td>Organizations</td>
<td>Internal HR system</td>
<td>Pure XML format (automatic recurring sync job)</td>
</tr>
<tr>
<td>Publications</td>
<td>Manual entry</td>
<td>User-friendly templates</td>
</tr>
<tr>
<td></td>
<td>Online sources, e.g. Scopus</td>
<td>Single-record import</td>
</tr>
<tr>
<td></td>
<td>Legacy systems</td>
<td>Automated import by person</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automated import by department</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pure XML format (single or repeated legacy import)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elsevier PRS service</td>
</tr>
<tr>
<td>Publishers and journals</td>
<td>Manual entry</td>
<td>Automatically together with import</td>
</tr>
<tr>
<td></td>
<td>Online sources, e.g. Scopus</td>
<td>Elsevier PRS service</td>
</tr>
<tr>
<td></td>
<td>Legacy systems</td>
<td>Pure XML format (single or repeated legacy import)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elsevier PRS service</td>
</tr>
<tr>
<td>Bibliometrics</td>
<td>Scopus + Web of Science</td>
<td>Automatically together with import</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automatic sync job for citations (Scopus and WoS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pure XML format (single or repeated legacy import)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elsevier PRS service (Scopus bibliometrics only)</td>
</tr>
<tr>
<td>Activities</td>
<td>Manual entry</td>
<td>User-friendly templates</td>
</tr>
<tr>
<td></td>
<td>Legacy systems</td>
<td>XML format for legacy import</td>
</tr>
<tr>
<td>Impact</td>
<td>Manual entry</td>
<td>User-friendly templates</td>
</tr>
<tr>
<td>Datasets</td>
<td>Manual entry</td>
<td>User-friendly templates</td>
</tr>
<tr>
<td></td>
<td>Legacy systems</td>
<td>XML format for legacy import</td>
</tr>
</tbody>
</table>
Quality assurance
Quality assurance – WHY

Data is used for mission-critical purposes

- Faculty review reporting
- Reports to funders
- Statutory reports to government or ministry
- Strategy-making and execution
- Researcher’s web profiles

So data must be quality-assured – for example:

- Correct and complete affiliations to authors, to organizations, to grants
- Correct and complete OA settings – embargo dates, licenses, file versions
- Correct and complete relations between publications and grants
- Correct and up-to-date metrics on publications and journals
Quality assurance – HOW

Tools for data quality assurance in Pure

- Workflows – enrich and validate incoming data
- Field validation
- Live overview screens
- Housekeeping reports
- Access strategies
- Roles and rights
- Preventive and corrective measures against duplicates
- Policy support
Outputs
Pure covers all types of outputs

Content types in Pure:
- Most types that a university will ever need are already in the system
- Typology is mature: 200+ universities in 20+ countries use Pure
- System administrators can add new type classifications themselves

- Journal articles
- Chapter in book/report/conference proceeding
- Book/report
- Contribution to specialist publication
- Working paper
- Contribution to conference
- Non-textual form
- Thesis
- Patent
- Memorandum/exposition

Choose submission

- Contribution to journal
- Chapter in Book/Report/Conference proceeding
- Book/Report
- Contribution to specialist publication
- Working paper
- Contribution to conference
- Non-textual form
- Thesis
- Patent
- Memorandum/exposition

Memorandum contribution

Question & Answer/hearing contribution

Memorandum, exposition
English-language “Fingerprint” on the publication
There are many ways to populate Pure with publications and other types of outputs:

- **Create manually**
  - Choose output type
  - Type data in

- **Import from online source**
  - Single record
  - Select online source
  - Search and select from results
  - Save imported record

- **Automated search by researcher**
  - Switch on and set name variations
  - See results
  - Import from results

- **Automated search by department**
  - Switch on and set search string (advanced)
  - See results
  - Import from results

- **Bulk import**
  - Study import XML format and create file
  - Use wizard to import file

**Elsevier PRS also available** – Profile Refinement Service from Scopus
Use of a mathematical model to describe the epidemiology of Lepeophtheirus salmonis on farmed Atlantic salmon Salmo salar in the Hardangerfjord, Norway

Infestation patterns of the sea louse Lepeophtheirus salmonis from 44 salmon farms in the Hardangerfjord on the south-west coast of Norway over the period 2004 to 2007 were assimilated to create 20-month production cycle profiles for spring and autumn stocked generations. The timing and frequency of in-feed and bath treatments to control sea lice associated with these profiles was considered. Spring and autumn stocked farms were observed to have different patterns of sea lice counts on salmon during the first and second years of production. Spring stocked sites experienced increasing infestation toward the end of the first year and on average counts remained elevated thereafter, whereas autumn stocked sites averaged lower sea lice counts throughout most of the production cycle until the latter part of the second year when these escalated rapidly. In-feed treatments were the predominant form of sea lice control in the first half of the production cycle on spring stocked farms, whereas bath treatments were used exclusively in the second half of the production cycle; a very similar pattern of therapeutant use was observed on autumn stocked farms.

Results using the SLIDEsim (Sea Lice Difference Equation Simulation) infection model and a range of biological and production parameters showed that modelling resulted in a better fit to the mobile lice profiles for autumn stocked farms compared to spring stocked farms. Some features of the mobile lice profiles were not captured by the infection model such as the oscillation of the population between months 11 and 18 of the production cycle on spring stocked farms, and a large peak observed in month 19 on autumn stocked farms. Before modelling can be used to evaluate optimal treatment strategies or other management interventions there remains a need to more clearly understand the underlying biological processes associated with the dynamics of sea lice infestations in the Hardangerfjord. (C) 2011 Elsevier B.V. All rights reserved.

General information
State: Published
Authors: Gettinby, G., Robbins, C., Lees, F., Heuch, P. A., Finstad, B., Malkenes, R., Revie, C. W.
Number of pages: 7
Pages: 164–170
Publication date: 1 Nov 2011
Peer-reviewed: Yes

Publication information
Journal: Plos neglected tropical diseases
Volume: 320
Issue number: 3–4
ISSN (Print): 1935–2727
Ratings: Web of Science (2011): Impact factor 1211.0
Original language: English
DOI: 10.1016/j.aquaculture.2011.03.017
Source: WoS
Source-ID: 000297185700005
Research output: Contribution to journal > Article

De-duplication – merge results in one single authoritative record
Using data
The following tools enable strong publication management:

- Pure's reporting module
- Pure's interactive lists and overview screens
- Pure's dynamic dashboards
- Pure's state-of-the-art research portal

**Interactive lists**
- Drill down into any type of content
- Search in lists (also advanced search)
- Add multiple filters to a list (here "peer reviewed" to a publication list)
- Bulk edit records in a list (or analyze in Scival)

**Overview screens**
- Configure as needed (publications by publishing state)
- Configure as needed (publications by type)

**A dashboard**
- Rights-managed interactive overviews
- Users can set a dashboard to a specific organization
- Users can set a dashboard to a specific time period
- Users can add widgets (also custom widgets)
- This widget shows the 10 most cited papers on campus for 2007-2014
- This widget shows the 5 top awardees on campus in 2007-2014

**A report being built**
- No. of applications per researcher
- Now also the total applied amount
- And now with publication citations (in the same report!)

**PurePortal**
- Universities’ public research information online
- Universities’ global collaboration online
- Universities’ researcher profiled online
- Universities’ researcher fingerprinted online (for strong discoverability)
So what did you see?

You saw system features in 6 areas:
- Pure's Publication typology – rich, mature, proven
- Pure's field definitions – rich, mature, proven
- Pure's options for ingesting publications – covers all needs situations
- Pure's tools for quality assurance – facilitates assurance of any type of content
- Pure's Open Access support – offers support of every aspect of modern Open Access
- Pure's options to use and showcase publications – easy, powerful, and flexible

You can consider:
- A system to covers all needs in one solution
- Short time to production, know costs, low project risk
- New international fellowship with many other university libraries (annual conference)
- To do more with less FTE

Pure – enable advanced publication management
Vielen Dank
Kontakt: g.hansen@elsevier.com